Assignment 1

Contents

1. Background 1
2. Initial Scheme Subset 1
3. Boilerplate Code 2
4. Run-time system 2
5. Assembly instructions 3
6. Coding hints 4
7. Testingcc.cooeviiiiin, 4

1. Background

During this course, we will write a compiler for a subset of Scheme that produces assembly language code
for the 64-bit x86_64 architecture. Actually, we will do this each week of the semester, including this week,
but the subset of Scheme will grow larger as the semester progresses. The compiler will also become more
sophisticated in other ways, primarily to generate more efficient code.

The assignment for this week is to implement a compiler for the subset of Scheme given in Section 2. The
compiler should consist of two passes:

e a verifier

e a code generator

The verifier should accept any Scheme value as an argument, but complain (with a descriptive message) if
the value does not represent a program in the current subset of Scheme. The code generator should accept a
program known to be in the current subset of Scheme and generate equivalent x86_64 code for the program.
The generated code should be printed to the current output port.

The verifier should be called verify-scheme, and the code generator should be called generate-x86-64.
You should be able to run them together on a Scheme program with a simple driver like the following:

(define driver
(lambda (program)
(with-output-to-file "t.s"
(lambda ()
(generate-x86-64 (verify-scheme program))))))

which leaves the output in the file t.s.

The structure of the code to be produced is given in Section 3. Section 4 gives the C code for a trivial
run-time system that calls the generated Scheme program and prints its result, and Section 5 describes how
to use gce to assemble the generated code, compile the run-time system, link the two together, and run the
resulting program. Section 6 and 7 give coding hints and instructions for testing the compiler.

What we need to know of the X86_64 architecture and instruction set is described in the X86_64 Primer.

2. Initial Scheme Subset

Here’s the initial subset of Scheme we’ll be handling:

(© 2009 R. Kent Dybvig, Andy Keep

Program — (begin Statement™)
Statement — (set! Vary int64)

| (set! Var, Vary)

| (set! Vary (Binop Var, mt32))

| (set! Vary (Binop Vary Vary))

— rax | rcx |rdx | rbx | rbp | rsi | rdi

| r8 | r9 | r10 | ri1l|r12|r13|rld | ri15

Binop — o+ | -] *

Var

NB: In the final two statement forms, the LHS variable of the set! and the first operand of the binary
operator must be the same variable, e.g., (set! rdx (+ rdx ri11l)) is okay, but (set! rdx (+ ri1l rdx))
is not.

Int32 and int64 are 32- and 64-bit exact integers, i.e., —231 < int82 < 231 — 1 and —293 < mntb) < 263 _ 1.

The restricted syntax for these operators, and the restricted choice of variable names is driven by the register
and instruction set of the x86_64 architecture. We will soon lift both restrictions.

3. Boilerplate Code

The generated code must be enclosed in a wrapper that makes the entry point visible to the C run-time
system and returns to C when the generated code has been run. The boilerplate code is as follows, where
generated code denotes the hole to be filled by the generated code.

.globl _scheme_entry

_scheme_entry:
generated code
ret

The generated code must set rax to the final computed value. For example, the program:

(begin
(set! rax 8)
(set! rcx 3)
(set! rax (- rax rcx)))

might produce the following assembly code:

.globl _scheme_entry
_scheme_entry:
movq $8, Yrax
movq $3, Jrcx
subq %rcx, %rax
ret

which returns the value 5 by leaving 5 in the rax register.

4. Run-time system

The run-time system consists of a main routine and a printer; both are trivial at this point.

#include <stdlib.h>
#include <stdio.h>

#ifdef __APPLE__ /* MacOS */
#define SCHEME_ENTRY scheme_entry
#else

#define SCHEME_ENTRY _scheme_entry
#endif

extern long SCHEME_ENTRY(void);

void print(long x) {
printf ("%1d\n", x);

}

int main(int argc, char **argv) {

/* no arguments at this point */

if (argec '= 1) {
fprintf (stderr, "usage: %s\n", argv[0]);
exit(1);

}

print (SCHEME_ENTRY()) ;

return O;

}

The special treatment of scheme_entry is necessary since MacOS implicitly adds an underscore onto
scheme_entry, and we don’t want it to think the name starts with two underscores.

Put the code for the run-time system in the file runtime.c. You can choose a different name, but if you do,
adjust the invocation of the C compiler (described below) to reflect the different name.

5. Assembly instructions

You must be running a 64-bit x86_64 (AMD or Intel) Linux or MacOS system in order to build and run an
executable program containing generated assembly code. If you do not have one of your own available, use
hulk.cs.indiana.edu.

The generated assembly code must be assembled (translated) to machine code so that the processor can run
it. Similarly, the C run-time code must be compiled to machine code. The two must be linked together
to form a single executable. These three steps can be performed with a single invocation of the GNU C
compiler, which knows how to handle assembly files (identified by the .s filename extension) as well as C
files. Assuming that the generated assembly code (tucked inside the boilerplate code described in Section 3
is in the file t.s and that the run-time system is in the file runtime.c, typing the following command in the
shell (bash or tcsh, for example) will do the job.

hulk)% cc -m64 -o t t.s runtime.c

where hulky is the shell’s prompt.

The -m64 option specifies that we are using the x86_64 instruction set, which may or may not be the default.
The -o filename option specifies the name of the product executable file, which is t in this case. The
remaining arguments are the files to be assembled or compiled.

The resulting executable file t can be run simply by typing ./t in the shell as follows.
hulk’ ./t

If you have "." in your path, you can type just t instead of ./t.

So, for the example given in Section 3, a build-and-run interaction with the shell might look like the following.

hulk)% cc -m64 -o t t.s runtime.c
hulky ./t
5

Windows users: The Microsoft C compiler and assembler cannot be used for this class. The assembly
syntax is different, and we aren’t set up to test or grade the code in any syntax other than the one accepted
by the Gnu tools. We tried installing the Cygwin tools, including the gcc compiler, on a 64-bit version of
Windows, but the compiler installed by Cygwin does not support 64-bit compilation. If you’re running a
64-bit version of Windows, you should be able to set up a Linux virtual machine, e.g., using vmware, but
the easiest solution is to use hulk.cs.indiana.edu.

6. Coding hints

So that you can use helpers with names like Statement to reflect the grammar structure, we suggest you set
the parameter case-sensitive to true by adding the following to the front of your file:

(case-sensitive #t)

The coding of generate-x86-64 will go more smoothly if you make use of Chez Scheme’s format and/or
printf procedures. You can probably profit now and in future assignments by defining some helpers (pro-
cedures or syntactic forms) to format operands, emit instructions, and emit labels.

Although these passes are short enough to be written with if and cond, your code will be more clean and
robust if you use match, which is defined in the file match.ss and described briefly in Using match.

Your compiler will run faster and you may get better feedback if you use optimize-level 2, by adding the
following to the front of your file:

(optimize-level 2)

This tells the system that it can assume that primitive names like cons aren’t going to be redefined or
assigned. The downside is that if you do redefine or assign the name of a primitive, including via trace, it
won’t have any effect on your code.

7. Testing

A small set of short test programs, for both valid and invalid programs, appears in the file tests.ss. You
should make sure that your compiler passes work at least on this set of tests.

