
Assignment 10

Contents
1. Background .................................. 1
2. Scheme Subset 10 ......................... 1
3. Object Representation ................... 2
4. Things to do ................................. 4

4.1. verify-scheme ...................... 4
4.2. specify-representation ...... 4

5. Boilerplate and Run-time Code ...... 8
6. Testing ......................................... 8
7. Coding Hints ................................ 8

1. Background

In this assignment, we add various Scheme datatypes and primitives to our language, which is a major step
in making the language more Scheme-like.

2. Scheme Subset 10

Here is a grammar for the subset of Scheme we’ll be handling this week:

Program −→ (letrec ([label (lambda (uvar*) Value)]*) Value)
Value −→ label

| uvar
| (quote Immediate)
| (if Pred Value Value)
| (begin Effect* Value)
| (let ([uvar Value]*) Value)
| (value-prim Value*)
| (Value Value*)

Pred −→ (true)
| (false)
| (if Pred Pred Pred)
| (begin Effect* Pred)
| (let ([uvar Value]*) Pred)
| (pred-prim Value*)

Effect −→ (nop)
| (if Pred Effect Effect)
| (begin Effect* Effect)
| (let ([uvar Value]*) Effect)
| (effect-prim Value*)
| (Value Value*)

Immediate −→ fixnum | () | #t | #f

Unique variables (uvar), labels (label), and restrictions upon unique variables and labels are as in the
Assignment 9 subset.

A fixnum is an exact integer in a machine-dependent range, which can be determined from the helpers.ss
fixnum-bits.

Valid value-prim, pred-prim, and effect-prim names and argument counts are given by the following table.
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category name arguments
value + 2

- 2
* 2
car 1
cdr 1
cons 2
make-vector 1
vector-length 1
vector-ref 2
void 0

pred <= 2
< 2
= 2
>= 2
> 2
boolean? 1
eq? 2
fixnum? 1
null? 1
pair? 1
vector? 1

effect set-car! 2
set-cdr! 2
vector-set! 3

3. Object Representation

The heart of our object representation is the ptr (which rhymes with “footer.”) A ptr is, simply, an encoding
of a Scheme object as an integer. For immediate objects, such as fixnums, the ptr is a tagged version of the
object. For heap-allocated objects, such as pairs, the ptr is a tagged pointer to the object.

Why are objects tagged? It would be more natural to represent, e.g., fixnums as their integer equivalents
and pairs as true pointers. This is not generally possible, however, since we need to be able to distinguish,
at run time, pairs from fixnums and both pairs and fixnums from all other types of objects. Otherwise, we
could not implement type predicates like pair? and fixnum?. We would also have problems down the road
with type checking and garbage collection. So we give each kind of object a different tag. Fortunately, the
tagging mechanism we use adds little overhead.

We will use a 64-bit low-tag representation for our ptrs, in which the tag is stored in the low-order three bits
of a 64-bit word. So that we can use three bits for the tag, we align each true pointer on a 64-bit (8-byte,
double-word) boundary, leaving three bits that are always zero at the bottom of each true pointer. These
three bits can be set to any value and still identify the true address as long as we zero them out or otherwise
adjust for their presence. Another way to look at this is that each true address is a multiple of eight, so we
can use all of the numbers in between, e.g., addr + 1 thorugh addr + 7 to identify different types of objects.

We call the low three bits of a ptr the primary tag. One primary tag is dedicated to fixnums, one to “other
immediates,” one to pairs, one to procedures, and one to vectors. The remaining three primary tags out of
the eight possible tag values are unassigned.

Fixnums are assigned tag 0002. The ptr representation of a fixnum is merely a 61-bit integer value, shifted
left by three bits, or multiplied by 8. For example, the fixnum 7 (1112) is represented by the ptr 56 (1110002).
It turns out to be convenient for the low-order bits to be zero and for the amount of the multiplier to be the
same as the number of bytes in a word, for reasons that we will get to later.

Pairs, procedures, and vectors are our only heap-allocated objects. A ptr is obtained from the true address
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of a heap-allocated object by adding the tag to the true address. For example, the ptr representation of an
object with tag 5 at true address 2000 is 2005. Naturally, this means that the true address can be obtained
from the ptr by subtracting the tag.

All immediates other than fixnums, i.e., booleans, the empty list, and void, share a single primary tag. In
order for them to share a single primary tag, we need to use additional bits to distinguish them, i.e., a
secondary tag. We use the remaining five bits of the least-significant byte as the secondary tag. Another
way to look at it is that, for non-fixnum immediates, we use the entire least-significant byte as the tag. In
fact, the least-significant byte defines the entire value of the constant for each of these immediates.

We can determine if we have a particular type of object by applying the appropriate mask (using logand)
and comparing the resulting value with the tag for that type of object. For example, to determine if we have
a pair, we apply a mask of 1112 and compare the result with the tag for pair.

We have three unused primary-tag values. If we had more than three additional heap-allocated types, we
would not have enough primary tags to support them. In this case, we would set aside one of the tags as an
escape tag. An object with this primary type would contain the actual tag (the secondary tag) in the first
word of its heap-allocated component. This mechanism yields a virtually unlimited number of tag values
and can thus be used to support indefinite numbers of user-defined types as well.

To help make this more concrete, here is one possible assignment of primary tags, shown in base two.

• 000: fixnums

• 001: pairs

• 010: procedures

• 011: unused

• 100: unused

• 101: unused

• 110: non-fixnum immediates

• 111: vectors

With this assignment of primary tags, a procedure at true address 80000 is represented by the ptr 80002,
which in binary looks like

10011100010000010

Here is a possible assignment of secondary tags for non-fixnum immediates, with the entire low-order byte
shown.

• 00000110: #f

• 00001110: #t

• 00010110: ()

• 00011110: void

Many other assignments are possible. Indeed, the commitments to three low-order tag bits and a word size
of 64 bits (eight bytes) are not set in stone. Because these things may change over time, it is good practice
not to build any tag-dependent constants into the compiler. Instead, use the symbolic names defined in
helpers.ss. For example, the tag value for pair is given by the value of the variable tag-pair, and the
amount by which fixnums are shifted is given by shift-fixnum. Take a look at the definitions of these
variables and the related variables in helpers.ss to familiarize yourself with what’s there.

It is a good idea to test your compiler with alternative values for these variables to make sure that you have
not built in particular tag values.
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4. Things to do

To handle the replacement of UIL integers and UIL primitives with Scheme datatypes and Scheme prim-
itives, along with the corresponding grammar changes, we must adjust the verifier and add a new pass,
specify-representation, to translate the Scheme datatypes and primitives into UIL datatypes in primi-
tives.

4.1. verify-scheme

This pass must be updated to reflect the changes in the language.

4.2. specify-representation

The goal of this pass is to convert all Scheme datatypes to their ptr equivalents so they are represented as
integers in the output language, and at the same time, translate calls to Scheme primitives into calls to UIL
primitives.

Although this pass handles all Scheme datatypes, it is useful to consider its responsibilities in three logical
parts: (1) the handling of immediate data and operators on immediate data; (2) the handling of non-
immediate (heap-allocated) data and operators on non-immediate data; and (3) the handling of type and
equivalence predicates.

Handling immediate datatypes:

The immediate datatypes in our language are fixnums, booleans, the empty list, and the void object. The
operators that deal specifically with fixnums are *, +, -, and the relational operators, e.g., < and =. Our
language does not have any that deal specifically with the other immediate datatypes.

Converting boolean constants, the empty list, and void into their ptr equivalents is trivial. #f is converted
into the value of the helpers.ss variable $false, #t to $true, () to $nil, and void to $void. (Although void
does not appear as a quoted constant, the void value primitive should be treated as a void constant.)

Converting fixnums into their ptr equivalents is almost as easy: simply shift the fixnum value left by
shift-fixnum.

Because of our choice of representation for fixnums, most of our primitive operations on fixnums need no
adjustment. Assuming shift-fixnum is 3, each fixnum x is effectively represented by the integer 8x. For +
and -, no adjustment is necessary, since 8x + 8y = 8(x + y) and 8x− 8y = 8(x− y). Similarly, for <, =, etc.,
no adjustment is necessary, since 8x < 8y if and only if x < y, and 8x = 8y if and only if x = y, etc.

Only for * do we need to make an adjustment. We do need one for *, since 8x ·8y = 64(x ·y). So we first shift
one of the operands back to the right, noting that 8x · y = 8(x · y). If either argument is a constant, we can
perform this shift at compile time; in this common case, there is no run-time overhead for the shift. Thus, for
(* e1 e2) where neither e1 nor e2 is constant, we produce (* e1 (sra e2 3)), and for (* e (quote n))
or (* (quote n) e) we produce (* e m), where m is n shifted right by 3. In the run-time call to sra, the
constant 3 is the actual value of shift-fixnum, not its ptr equivalent.

While most of our tag assignments are arbitrary, the decision to use a zero tag for fixnums was made
precisely so that arithmetic operations are largely unaffected by the tagging. The value of shift-fixnum
doesn’t matter: a different shift would result in a different multiplier, but all of the same properties would
still hold. Remember to use shift-fixnum, rather than constants like 3 and 8, in your code.

Handling non-immediate (heap-allocated) datatypes:

There are no non-immediate constants in our language (yet), so we do not need to worry about their
conversion to UIL constants. Also, we have not yet added first-class procedures, so the only heap-allocated
datatypes we have at this point are pairs and vectors. Thus, we need focus only on handling the operators that
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create, access, and modify pairs and vectors, i.e., cons, make-vector, car, cdr, vector-length, vector-ref,
set-car!, set-cdr!, and vector-set!. We need to convert each of these into code that employs the UIL
primitives for allocating and manipulating memory, i.e., alloc, mref, and mset!.

Let’s consider pairs first. A pair is represented by a ptr whose true address equivalent points to a two-word
block of memory, with the car field possibly (but not necessarily) preceding the cdr field.

pair

car cdr

The accessors car and cdr are translated into calls to mref with different byte offsets. The byte offset of
the car field of a pair from the true address of the pair is given by the helpers.ss variable disp-car. Simply
adding disp-car to the ptr representation of a pair won’t do, however, since the ptr is itself offset from the
true address by tag-pair. Thus, the byte offset of the car field is determined by subtracting tag-pair from
disp-car, i.e.,

(car e) → (mref e offset-car)

where offset-car is the value of (- disp-car tag-pair). cdr is translated similarly, using disp-cdr instead
of disp-car. The mutators set-car! and set-cdr! are converted into calls to mset!, using the same byte
offsets as for car and cdr. For example:

(set-car! e1 e2) → (mset! e1 offset-car e2)

To allocate a pair, we simply invoke alloc as follows:

(alloc size-pair)

where size-pair is the value of the helpers.ss variable size-pair. alloc returns the address of the allocated
block. We convert this address into a ptr by adding the pair tag to the address:

(+ (alloc size-pair) tag-pair)

We now have a pair, but we haven’t yet filled it up. We do this with the mset! equivalents of set-car! and
set-cdr!.

(cons e1 e2) →
(let ([tmp-car e1] [tmp-cdr e2])
(let ([tmp (+ (alloc size-pair) tag-pair)])
(begin
(mset! tmp offset-car tmp-car)
(mset! tmp offset-cdr tmp-cdr)
tmp)))

We could perform the following simpler transformation.

(cons e1 e2) →
(let ([tmp (+ (alloc size-pair) tag-pair)])
(begin
(mset! tmp offset-car e1)
(mset! tmp offset-cdr e2)
tmp))

This would violate Scheme’s applicative-order semantics, however, since the pair would be allocated before
the cons arguments. This is not detectable in our current subset of Scheme, but it will be if we decide to
add call/cc.

5



To make this a bit more concrete, let’s use the actual values of size-pair, tag-pair, disp-car, and
disp-cdr from helpers.ss.

(cons e1 e2) →
(let ([tmp-car e1] [tmp-cdr e2])
(let ([tmp (+ (alloc 8) 1)])
(begin
(mset! tmp -1 tmp-car)
(mset! tmp 3 tmp-cdr)
tmp)))

Handling vectors is slightly more complicated. A vector contains a length field followed by a sequence
additional fields containing the elements of the vector..

vector

length element element

The vector-length primitive may be handled in the same manner as car, using tag-vector and disp-vector-length
in place of tag-pair and disp-car.

The UIL code for vector-ref is a bit more involved than the UIL code for car, since we now have an index
to deal with. This index must be added to the offset of the first element to determine the offset of the
selected element. The general case, where the index is not known at compile time, is given below.

(vector-ref e1 e2) → (mref e1 (+ offset-vector-data e2))

where offset-vector-data is the value of (- disp-vector-data tag-vector). When the index is known at
compile time, we can avoid the run-time addition by performing it at compile time.

(vector-ref e1 k) → (mref e1 n)

where n is the value of (+ (- disp-vector-data tag-vector) k).

Is this really correct? We know that mref requires a byte offset, yet our vector indices are given as element
numbers, which are essentially word offsets. Or are they? Here is where the representation of fixnums helps
us once again. We have arranged for the fixnum multiplier to be precisely the number of bytes in a word, so
that when we add the fixnum index, we’re actually adding w times the actual index, where w is the number
of bytes in a word. In this case, the tagging actually saves us an operation.

Handling vector-set! is similar to handling vector-ref, though an mset! call is produced rather than an
mref call.

To allocate a vector, we must compute the size in much the same manner as we compute mref offsets for
vector-ref. Otherwise, the allocation of vectors is similar to the allocation of pairs. Again, we have two
cases: one in which the size is a constant and the other in which it is not. The constant-size case is shown
below.

(make-vector k) →
(let ([tmp (+ (alloc n) ,tag-vector)])
(begin
(mset! tmp offset-vector-length k)
tmp))

where offset-vector-length is the value of (- disp-vector-length tag-vector), and n is the value of
(+ disp-vector-data k).

The variable-size case is similar.
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(make-vector e) →
(let ([tmp1 e])
(let ([tmp2 (+ (alloc (+ disp-vector-data tmp1)) tag-vector)])

(begin
(mset! tmp2 offset-vector-length tmp1)
tmp2)))

Handling type and equivalence predicates:

Most of the remaining primitives are type predicates and are implemented, as described in Section 3, by
isolating the appropriate set of tag bits and comparing them against the appropriate tag. The UIL primitive
logand is used to isolate the tag, and = is used to perform the comparison:

(= (logand e mask) tag)

The mask and tag values for each type are given in the machine definition as mask-type and tag-type.

The null? predicate could be handled in the same manner as the other type predicates, but it is easier to
treat it as a call to eq? with the second argument an implicit quoted empty list, i.e., treat (null? e) as
(eq? e ’()).

This leaves only eq?, which is easy. With all Scheme objects represented as integers (specifically, ptrs), eq?
can simply be converted into =.

(eq? e1 e2) → (= e1 e2)

Summary:

The following items summarize what must be done on this pass:

• Convert quoted fixnums and other immediates into their unquoted ptr equivalents, using the values of
the appropriate helpers.ss variables.

• Adjust one multiplication operand, at compile time if possible, otherwise at run time, using the
helpers.ss variable shift-fixnum.

• Convert calls to cons and make-vector into calls to alloc. Take advantage of constant lengths in
make-vector, where possible.

• Convert calls to car, cdr, vector-length, and vector-ref into calls to mref. Take advantage of
constant indices in vector-ref, where possible.

• Convert calls to set-car!, set-cdr!, and vector-set! into calls to mset!. Take advantage of constant
indices in vector-set!, where possible.

• Expand the type predicates fixnum?, fixnum?, pair?, and vector? into calls to logand and =, inserting
the appropriate values of the symbolic mask and tag constants.

• Convert calls to eq? into calls to =. Treat calls to null? as calls to eq? with the empty list as one
argument, hence convert them as well into calls to =.

That’s it! A lot of code is involved to handle all of the cases, but with some good abstractions, many of the
cases can be treated similarly.
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5. Boilerplate and Run-time Code

The boilerplate code does not change. The run-time code in the updated runtime.c now assumes that the
value returned from Scheme is a Scheme object, and it prints the object using a rudimentary Scheme printer,
so that we can see actual lists, vectors, booleans, etc., in the output.

6. Testing

A small set of invalid and valid tests for this assignment have been posted in tests10.ss. You should make
sure that your compiler passes work at least on this set of tests.

7. Coding Hints

Before starting, study the output of the online compiler for several examples.

Use make-begin to avoid nested begin expressions.
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