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1. Background

In this assignment, we remove restrictions on where primitive calls, procedure calls, and quoted constants
appear and assign meaning to those that appear in “abnormal” contexts, such as predicate primitive calls
in value context or value primitive calls in effect context. We also generalize the language to permit letrec
expressions to appear anywhere, not just at top level, although we still do not permit lambda expressions to
have free variables.

Finally, we add an optimization pass that eliminates the jumps to jumps that expose-basic-blocks pro-
duces in certain circumstances.

2. Scheme Subset 11

Here is a grammar for the subset of Scheme we’ll be handling this week:

Program —  Expr
Ezxpr —  label
wvar

|
| (quote Immediate)

| (if Ezpr Expr Expr)

| (begin FExpr* Expr)

| (let ([uvar Ezprl*) FExpr)

| (letrec ([label (lambda (uvar*) Expr)l*) FEzpr)
| (prim Expr*)

| (Ezpr Expr*)

Immediate —  fiznum | () | #t | #£

Within the same Program, each label bound by a letrec expression must have a unique suffix, and each
uvar bound by a lambda or let expression must have a unique suffix.

A label is visible throughout the letrec expression that binds it. A wwar is visible throughout the let or
lambda body that binds it, except within nested lambda expressions. Thus, a label can appear free within a
lambda expression, but a uvar cannot.

A fiznum is an exact integer in a machine-dependent range, which can be determined from the helpers.ss
fixnum-bits.

The set of primitives prim is the union of the sets of value, pred, and effect primitives given in Assignment 10.
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3. Things to do

We need to rewrite the program so that it is in the source language of Assignment 10, which means we need
to move all letrec expressions to top level and reorganize the code into separate Value, Pred, and Effect
contexts. We achieve this through two new passes, lift-letrec and normalize-context. We must also
add an optimization pass, optimize-jumps, that runs after expose-basic-blocks to eliminate the jumps
to jumps that expose-basic-blocks can leave behind.

3.1. verify-scheme

This pass must be updated to reflect the changes in the language.

3.2. lift-letrec

This pass simply moves all letrec bindings from where they appear into a letrec expression wrapped
around the outermost expression, removing all of the internal letrec expressions in the process.

3.3. normalize-context

On input to this pass, any expression can appear in any of three contexts:

effect, where the resulting value is not needed, e.g., all but the last subexpression of a begin;
predicate, where the expression determines flow of control, e.g., the test part of an if; and

value, where the value is needed, e.g., the right-hand side of a let.

Since any expression can appear in any of the three context, the contexts are not even distinguished by the
grammar given in Section 2.

Yet, some expressions don’t make sense in certain contexts, e.g., constants in effect context. Others are
problematic as we move toward language-independent code. In the machine-independent portion of the
compiler, the compiler cannot (should not!) know what value to return for (< 3 4) when it appears in a
value context. Should it return #t? That wouldn’t be language-independent. How about 1, as in C? That
wouldn’t be language-independent either. Does (- 17 17) evaluate to a true or a false value? Which values
returned by a procedure call are true and which are false? There’s no way for the language-independent
portion of the compiler to know.

The goal of this pass is to recognize the three distinct contexts above and to rewrite the code so that each
kind of expression appears only in contexts that are appropriate for that expression.

Along with this partitioning of contexts goes a partitioning of primitives. Calls to predicate primitives, such
as <, are permitted only in predicate context. Calls to value primitives, such as +, are permitted only in
value context. Calls to effect primitives, such as set-car!, are permitted only in effect context. Each of our
primitives falls into one of these categories.

In the input language, the Scheme primitive void can be used as both a value (meaning the unspecified
value) and as a “no-op” (no operation) place-holder, e.g., in the representation of one-armed if expressions
as two-armed if expressions. In the output of normalize-context, (nop) is used in place of a call to void
for the latter purpose.

Besides primitive calls, a few other expressions are limited to certain contexts in the output of this pass

e Constants, i.e., quote expressions, are permitted only in value context. They are unnecessary in effect
context and are simply dropped, i.e., replaced with (nop), in that context. In predicate context, #f is
replaced by (false), and all nonfalse constants are replaced by (true).



e Variable references and label expressions are valid only in value context.

e Procedure calls are valid in both value and effect context but not in predicate context.

An if, begin, or let expression may appear in any of the three contexts.

The partitioning into contexts and restrictions on what may be present in each context are reflected in the
grammar for the output of this pass, which is the grammar for the source language of Assignment 10.

The following contrived input program shows normalize-context in action.

(letrec ()
(let ([x.1 °1] [y.2 ’2] [a.3 ’3] [b.4 ’4] [p.5 (cons ’#f ’#t)])
(begin
(* (begin (set-car! p.5 ’#t) x.1) y.2)
(if (if (car p.5) (if (< x.1 y.2) ’#f >#t) >17)
(if (= a.3 b.4) ’#f *#t)
(k=y.2 x.1)))))

Ths program contains several violations of the restrictions normalize-context is designed to enforce. While
the call to < is used appropriately to direct traffic, determining which of its two arms should proceed, the
call to <= is in value context. The call to * appears in effect context, where it is useless, as are the references
to x.1 and y.2. The call to car appears in a predicate context, but car is more appropriately treated as a
value primitive. Finally, the expression ’17 appears in a predicate context, as do a couple of quoted boolean
constants.

Here is what normalize-context produces for this program.

(letrec O
(let ([x.1 °1] [y.2 ’2] [a.3 ’3] [b.4 4] [p.5 (cons ’#f ’#t)])
(begin
(set-car! p.5 ’#t)
(if (if (if (eq? (car p.5) ’#f) (false) (true))
(if (< x.1 y.2) (false) (true))
(true))
(if (= a.3 b.4) ’#f ’#t)
(if (<= y.2 x.1) ’#t *#£)))))

The call to <= has been replaced with an equivalent if expression that explicitly computes the boolean value,
so that the resulting call is in predicate context. The call to * and the variable references to x.1 and y.1
have been eliminated. The call to car has been replaced with (if (eq? (car p.5) ’#f) (false) (true)),
explicitly testing its boolean value. Finally, the constants appearing in predicate context have been replaced
with (true) or (false) as appropriate.

Each transformation is straightforward and generally applicable to similar kinds of expressions. Any constant
in predicate context can be converted to (true) or (false). Any other value-producing expression ezrpr in
predicate context can be converted to

(if (eq? expr ’#f) (false) (true))
Any predicate expression expr in value context can be converted to
(if expr ’#t *#f)

In effect context, constants, variables, and label references can be converted into (nop), but care must
be taken for value and predicate primitive calls. While the calls may be discarded, the operands must be
evaluated for their effects, if any. This can be done by processing the operands in effect context and wrapping
the resulting code in a begin expression. Unnecessary occurrences of (nop) should be removed using a helper
make-nopless-begin.



(define (make-nopless-begin x*)
(let ([x* (remove ’(nop) x*)1)
(if (null? xx*)
> (nop)
(make-begin x*))))

The set of input expressions is small, but we have to consider each type in each of the three contexts, and
we have to recognize three different categories of primitives. For each context, we must look for each kind
of expression and deal with it in a matter appropriate for the context so that the output language is in the
grammar shown above. The structure of the pass must therefore look like many of the passes we have already
written, with separate handlers for Value, Pred, and Effect contexts. In general, the high-level structure of
a pass typically reflects the structure of the output grammar, although the set of expressions it must process
is determined by the structure of the input grammar.

3.4. optimize-jumps

When we added expose-basic-blocks to our compilers, we decided not to special-case if expressions where
the consequent or alternative is (nop), (true), or (false), even though the pass would have generated better
code had wse done so. We did this for two reasons: (1) to avoid complicating and already complicated pass
and (2) because we generally want to do optimizations in passes dedicated to performing those optimizations.
We put optimizations in dedicated passes so that they can be selectively disabled for testing and to allow
programmers to trade run-time performance for compilation speed during program development.

In each case where we could have special-cased an if expression, expose-basic-blocks generates a letrec
binding to a procedure that simply jumps to another block. While these extra blocks do not affect the
correctness of the generated code, they do affect the size and possibly performance of the generated code. The
new optimization pass, optimize-jumps, runs after expose-basic-blocks and eliminate these unnecessary
jumps.

For instance, let’s say we have the program:

(letrec (O
(let ([x.1 °5]1)
(if (if (= x.1 ’6) (true) (if (= x.1 ’5) (true) (= x.1 ’4)))
(+ x.1 x.1)
(* x.1 2))))

expose-basic-blocks generates something like the following code for this program:

(letrec ([c$9 (lambda () (c$5))]
[a$10 (lambda () (if (= rax 40) (c$7) (a$8)))]
[c$7 (lambda () (c$5))]
[a$8 (lambda () (if (= rax 32) (c$5) (a$6)))]
[c$5 (lambda () (begin (set! rax (+ rax rax)) (r15)))]
[a$6 (lambda () (begin (set! rax (* rax 2)) (r15)))1)
(begin (set! rax 40) (if (= rax 48) (c$5) (a$10))))

Two of the lambda bodies consist solely of jumps. After optimize-jumps, the bindings for these lambda
bodies no longer appear.

(letrec ([2$10 (lambda () (if (= rax 40) (c$5) (a$8)))]
[a$8 (lambda () (if (= rax 32) (c$5) (a$6)))]
[c$5 (lambda () (begin (set! rax (+ rax rax)) (r15)))]
[a$6 (lambda () (begin (set! rax (* rax 2)) (ri15)))]1)
(begin (set! rax 40) (if (= rax 48) (c$5) (a$10))))



In addition to removing the bindings, the pass also replaces the jumps to c$7 and c$9 with jumps to c$5,
which happens to be the ultimate target in each case.

The pass can perform the optimization in three logical steps:

e build an association list from the label of each lambda expression whose body is a jump to its target
label; and

e remove the bindings for the lambda expressions whose bodies are jumps; and

e within the remaining bodies, replace the target of each jump to one of these lambda expressions with
a jump directly to the final target.

The first and second logical steps can be done at the same time, but we will need to build the association
list before we can do the final step.

Walking through our example above:

(letrec ([c$9 (lambda () (c$5))]
[a$10 (lambda () (if (= rax 40) (c$7) (a$8)))]
[c$7 (lambda () (c$5))]
[a$8 (lambda () (if (= rax 32) (c$5) (a$6)))]
[c$5 (lambda () (begin (set! rax (+ rax rax)) (r15)))]
[a$6 (lambda () (begin (set! rax (* rax 2)) (r15)))1)
(begin (set! rax 40) (if (= rax 48) (c$5) (a$10))))

Performing both the first and second steps, we eliminate the letrec bindings for c$9 and c$7 while simul-
taneously generating an association list mapping c$9 to c$5 and c$7 also to ¢$5. Thus, our program is
now:

(letrec ([a$10 (lambda () (if (= rax 40) (c$7) (a$8)))]
[a$8 (lambda () (if (= rax 32) (c$5) (a$6)))]
[c$5 (lambda () (begin (set! rax (+ rax rax)) (r15)))]
[a$6 (lambda () (begin (set! rax (* rax 2)) (r15)))]1)
(begin (set! rax 40) (if (= rax 48) (c$5) (a$10))))

and the association list is:
((c$9 . c$5) (c$7 . c$5))

Next we recur through the remaining bodies, rewriting jump targets as directed by the association list,
yielding the final result below.

(letrec ([a$10 (lambda () (if (= rax 40) (c$5) (a$8)))]
[a$8 (lambda () (if (= rax 32) (c$5) (a$6)))]
[c$5 (lambda () (begin (set! rax (+ rax rax)) (r15)))]
[a$6 (lambda () (begin (set! rax (* rax 2)) (r15)))1)
(begin (set! rax 40) (if (= rax 48) (c$5) (a$10))))

While building the association list and removing bindings, the pass must be careful not to remove all of the
jumps that participate in a cycle. For example, if the expose-basic-blocks output

(letrec ([f$1 (lambda () (£$2))]
[f$2 (lambda () (£$1))1)
(£$1))

is passed to optimize-jumps, it must not eliminate both bindings, although it can remove one of the two,
producing either



(letrec ([f$2 (lambda () (£$2))1) (£$2))
or the isomorphic
(letrec ([£f$1 (lambda () (£$1))1) (£$1))

This pass should be added to your compiler just after expose-basic-blocks. The grammar for optimize-jumps
is the same as the output grammar for expose-basic-blocks. In general, we should be able to enable or
disable any optimization pass at will, so its input and output grammars must be the same.

4. Boilerplate and Run-time Code

The boilerplate code and run-time code do not change.

5. Testing

A small set of invalid and valid tests for this assignment have been posted in testsll.ss. You should make
sure that your compiler passes work at least on this set of tests.

6. Coding Hints

Before starting, study the output of the online compiler for several examples.

Use make-begin or make-nopless-begin to avoid nested begin expressions.



