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1. Background

This week we generalize the language by allowing

1. quoted list and vector constants;
2. letrec right-hand sides to be arbitrary expressions; and

3. variables to be assigned with set!.

2. Scheme Subset 14

Here is a grammar for the subset of Scheme we’ll be handling this week:

Program —  Ezxpr

Expr —  uvar
| (quote datum)
| (if Expr Ezpr Expr)
| (begin FExpr* Expr)
| (lambda (uvar*) Expr)
| (let ([wvar Ezprl*) Expr)
| (letrec ([uvar Ezprl*) Ezxpr)
| (set! wvar Ezpr)
| (prim Expr*)
| (Ezpr Expr*)

A datum is an immediate, pair of datums, or vector of datums; and an immediate is a boolean, a fixnum, or
the empty list. The set of primitives and the constraints on unique variables and fixnums do not change.

3. Things to do

This week’s passes must convert list and vector constants into code that explicitly allocates the specified
lists and vectors (convert-complex-datum), locate assigned variables and allocate explicit locations for
them (uncover-assigned and convert-assignments), and rewrite arbitrary Scheme letrec expressions to
“pure” letrec expressions that bind only unassigned variables to lambda expressions (purify-letrec).
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3.1. verify-scheme

This pass must be updated to reflect the changes in the source language.

3.2. convert-complex-datum

As we head toward UIL, which is independent of Scheme, we must at some point make explicit the represen-
tation of quoted pairs and vectors. These datatypes are specific to Scheme, although other languages may
have similar datatypes, and in any case must ultimately be allocated as blocks of memory in the Scheme
heap, just like pairs and vectors are allocated by cons and make-vector.

One way to accomplish this is to convert quoted pairs and vectors into code that builds them using cons
and make-vector. Thus,

’(1 (2 (3 4 5)))

would be replaced by

(cons ’1 (cons (cons ’2 (coms (cons ’3 (cons ’4 (cons ’5 ’()))) >0)) >0O))

and

'#(32 (33 33) 34)

by

(let ([tmp.1 (make-vector ’3)])
(begin
(vector-set! tmp ’0 32)
(vector-set! tmp ’1 (cons 33 (cons 33 ’())))
(vector-set! tmp ’2 34)
tmp.1))

Once this transformation has been performed, quote expressions contain only immediate values, values that
can be represented in a single machine word, i.e., fixnums, booleans, the empty list, and the void object.

We are not satisfied with merely replacing each complex constant with code that builds it, since this can
cause the same, supposed constant, structure to be created multiple times, leading to less efficient code and
sometimes surprising results. For example:

(let ([f.1 (Lambda () (1 . 2)1)
(eq? (£.1) (£.1)))

would become

(let ([f.1 (lambda () (coms ’1 ’2))1)
(eq? (£.1) (£.1)))

which creates the pair (1 . 2) once for each call to f.1 and, thus, returns #f rather than #t. Either behavior
is allowed by the Scheme standard, but it is preferable to avoid repeated allocation of the same constant
structure.

Thus, we instead bind a new variable to the result of building the structure and reference the new variable
in place of the quoted constant, as follows.

(let ([tmp.2 (cons ’1 ’2)1)
(let ([f.1 (lambda O tmp.2)1)
(eq? (£.1) (£.1))))



With this version, the pair is created only once, as desired.
This solution generalizes naturally to multiple complex constants, so that

(let ([f.1 (lambda () (cons (1 . 2) ’(3 . NI
(cons (f.1) (£.1)))

becomes

(let ([tmp.2 (cons ’1 ’2)] [tmp.3 (comns ’3 ’4)])
(let ([f.1 (lambda () (cons tmp.2 tmp.3))])
(cons (f.1) (£.1))))

convert-complex-datum should perform this transformation, wrapping the introduced let expression (if
one is necessary) around the program as a whole.

It is possible but not necessary to commonize like structure that appears in two places. For example,
(eq? 7(2) (cdr ’(1 2)))
might become

(let ([tmp.1 (coms ’2 ’())] [tmp.2 (cons ’1 (coms ’2 *()))]1)
(eq? tmp.1 (cdr tmp.2)))

and evaluate to #f, or it might become

(let ([tmp.1 (coms ’2 >())1)
(let ([tmp.2 (cons ’1 tmp.1)])
(eq? tmp.1 (cdr tmp.2))))

and evaluate to #t.

The latter transformation is considerably more complex. To keep things simple, our implementation does
the former transformation. Both are legal implementations of quote in Scheme.

3.3. uncover-assigned

Adding set! expressions is not a big deal, per se, but since the same variable can be accessed by more than
one procedure, we need to place the values of each that is assigned in some location shared by the procedures,
so that the effect of an assignment by one procedure can be observed by the others. Identifying the set of
assigned variables is the first step in this process and is the job of uncover-assigned.

This pass locates all assigned variables and records each within the lambda, let, or letrec form that binds
it. An assigned variable is one that appears somewhere within its scope on the left-hand side of a set!
expression. To record this information, the body of each lambda, let, and letrec expression is wrapped
in an assigned form listing the assigned variables bound by the expression. The assigned form is inserted
even if the list of assigned variables is empty.

For example:
(let ([x.1 °0]1) x.1)
becomes

(let ([x.1 ’01)
(assigned O
x.1))

since x.1 is not assigned, while



(let ([x.1 ’01)
(begin
(set! x.1 (+ x.1 °1))
x.1))

becomes

(let ([x.1 ’01)
(assigned (x.1)
(begin
(set! x.1 (+ x.1 °1))
x.1)))

since x.1 is assigned, and

(let ([x.3 ’10] [y.1 ’11] [z.2 ’12])
(let ([f.9 (lambda (u.7 v.6)

(begin
(set! x.3 u.7)
(+ x.3 v.6)))]

[g.8 (lambda (r.5 s.4)

(begin
(set! y.1 (+ 2.2 s.4))
y-1))1)

(x (£.9 ’1 °2) (g.8 3 '4))))

becomes

(let ([x.3 °10] [y.1 ’11] [z.2 ’12])
(assigned (x.3 y.1)
(let ([£.9 (lambda (u.7 v.6)
(assigned ()
(begin
(set! x.3 u.7)
(+ x.3 v.6))))]
[g.8 (lambda (r.5 s.4)
(assigned ()
(begin
(set! y.1 (+ 2.2 s.4))
y. MDD
(assigned (O
(x (£.9 ’1 °2) (g.8 ’3 "4))N))

since x.3 and y.1 are assigned but z.2 is not; also £.9 and g.8 are not assigned; also u.7 and v.6 are not
assigned; also r.5 and s.4 are not assigned.

Finally:

(let ([x.3 °10] [y.1 ’11] [z.2 ’12])
(let ([f.7 *#f]
[g.6 (lambda (r.5 s.4)
(begin
(set! y.1 (+ z.2 s.4))
vy
(begin
(set! £.7 (lambda (u.9 v.8)



(begin
(set! v.8 u.9)
(+ x.3 v.8))))
(x (£.7 1 °2) (g.6 ’3 ’4)))))

becomes

(let ([x.3 ’10] [y.1 °11] [z.2 ’12])
(assigned (y.1)
(let ([f.7 ’#f]
[g.6 (lambda (r.5 s.4)
(assigned O

(begin
(set! y.1 (+ z.2 s.4))
y.-OMOD
(assigned (£.7)
(begin
(set! £.7

(lambda (u.9 v.8)
(assigned (v.8)
(begin
(set! v.8 u.9)
+ x.3 v.8)))
(x (£.7 °1 °2) (g.6 ’3 ’4)))))))

since y.1 is assigned but x.3 and z.2 are not; also f£.7 is assigned but g.6 is not; also v.8 is assigned but
u.9 is not; also r.5 and s.4 are not assigned.

Determining at compile time whether a variable will be assigned at run time is generally undecidable, so we
conservatively assume that a variable is assigned if it appears on the left-hand side of an assignment (set!
expression). Thus, we consider x.1 to be assigned in

(let ([x.1 ’#£1)
(begin
(if x.1 (set! x.1 ’#t) (void))
x.1))

even though it’s possible to prove that the assignment to x. 1 is not reachable. It would be better to eliminate
unreachable assignments in an earlier optimization pass in any case.

This pass may be implemented in a manner similar to uncover-free.

3.4. purify-letrec

This pass rewrites letrec expressions so that, in the output of the pass, all letrec expressions are “pure,”
i.e., bind only unassigned variables to lambda expressions.

The Scheme letrec expression

(letrec ((f (lambda (x) (+ x 1)))
(g (lambda (y) (£ (£ y)))))
+ (£ 1) (g LN

is pure, while

(letrec ((f (lambda (x) (+ x 1)))
(g (lambda (y) (£ (£ y)))))



(set! f (lambda (x) (- x 1)))
+ (£ 1 (g )

is impure, since f is assigned, and

(letrec ((f (cons (lambda (x) x) 17))
(g (lambda (y) ((car f) ((car £) y)))))
(+ ((car £) (cdr £)) (g 1)))

is impure, since the right-hand-side of the first binding is not a lambda expression.

Pure letrec expressions in the input should appear as pure letrec expressions in the output. In the
intermediate language at the point where this pass occurs, pure letrec expressions do change slightly in
that the unnecessary assigned form, which becomes superfluous because no letrec-bound variables are
assigned after this pass, is dropped.

(letrec ((z e) ...) (assigned () body)) —
(letrec ((z €e) ...) body)

But what about impure letrec expressions?

The simplest solution is to replace all impure letrec expressions with the following standard let-and-set!
expansion of letrec.

(letrec ((xz e) ...) body) —
(let ((z (void)) ...)
(let ((t e) ...)
(set! z t) ...)
body)

In our language, the transformation can be expressed as follows:

(letrec ((z e) ...)
(assigned (2! ...)
body)) —
(let ((z (void)) ...)
(assigned (z ...)
(begin
(et ((t e) ...)
(assigned ()
(begin (set! z t) ...)))
body)))

where each ¢ is a new variable.

Indeed, we could eliminate all letrec expressions in this manner, but leaving pure letrec expressions in
the language allows subsequent passes to generate better code.

For that matter, we can do better even for some impure letrec expression, since some of the bindings of an
impure letrec expression might be pure. The more sophisticated transformation described below produces
fewer assigned variables and more (pure) letrec bindings.

For the more sophisticated transformation, handle each letrec expression
(letrec ([z e] ...) (assigned (a! ...) body))
as follows.

1. Transform the expressions e ... and body via recursive application of this transformation to produce
new e ... and body.



2. Partition the bindings [z e] ... into three sets:

[zs es] ... simple
[z; ¢l ... lambda
[z. el ... complex

3. Produce a set of nested 1let and letrec expressions from the partitioned bindings and body as shown
below:

(let ([zs €] ...)
(assigned ()
(et ([z. (void)] ...)
(assigned (2. ...)
(letrec ([z ¢l ...)
(let ([fL’t EC] eed)
(assigned ()

(set! . )
vel)
body))))))

where z; ... are fresh temporaries. Produce the innermost let only if [z. e.] ... is nonempty, and
produce begin expressions where needed.

A binding [z e] is considered

simple if x is not assigned and e is a simple expression;
lambda if z is not assigned and e is a lambda expression; and

complex otherwise.

A simple expression contains no occurrences of the variables bound by the letrec expression and no ap-
plications unless nested within lambda expressions. The latter constraint prevents simple expressions from
reaching a call to call/cc if we ever add call/cc to our language. Of course, at that time we would also
rule out primitive calls to call/cc itself. It would also make sense to disallow letrec expressions, to prevent
this pass from becoming nonlinear, and to disallow other expressions, such as lambda expressions, to reduce
the cost of the “simple” check. Use your own judgement on this as long as you do treat as simple constants,
references to variables not bound by the letrec, and primitive calls with simple operands.

3.5. convert-assignments

This pass eliminates set! expressions and, more importantly, assigned variables. To do so, it (a) introduces
a let expression binding each assigned variable to a freshly allocated pair whose car is the original value
of the variable, (b) replaces each reference to an assigned variable with a call to car, and (c) replaces each
assignment with a call to set-car!. These transformations are described in more detail below.

a. Replace each assigned form
(assigned (z ...) expr)

with

(let ((z (coms t (void))) ...) expr)

and replace the binding of z by the enclosing lambda or let expression with an identical binding for ¢, where
each t is a new unique name.

b. Replace each reference z to an assigned variable with



(car z)

c. Replace each assignment
(set! z e)

with

(set-car! z e)

For example,

(let ([x.3 ’10] [y.1 ’11] [z.2 ’12])
(assigned (x.3 z.2)
(begin
(set! x.3 (+ x.3 y.1))
(set! z.2 (x y.1 °2))
(cons y.1 z.2))))

becomes

(let ([x.5 ’10] [y.1 ’11] [z.4 ’12])
(let ([x.3 (cons x.5 (void))] [z.2 (cons z.4 (void))])
(begin
(set-car! x.3 (+ (car x.3) y.1))
(set-car! z.2 (x y.1 ’2))
(cons y.1 (car z.2)))))

The code would still be correct Scheme code if we used the same names for the original and introduced
bindings. We do the renaming to maintain the invariant that the same name is not used for two different
variables. Renaming the original bindings, which are referenced only on the right-hand sides of the inserted
let, is simpler than renaming the variables bound by the inserted let.

Although programs output from this pass no longer have set! expressions in them, the set! expressions
have not really been eliminated—they’ve just changed form. For this reason, this transformation is referred
to as “assignment conversion.” In essence, assignment conversion makes explicit the locations where the
values of assigned variables are stored.

A sufficient justification for convert-assignments is that it allows us to simplify the language a bit: we
get to drop set! without adding anything new (we already have to handle cons, car, and set-car!). This
is, however, only a superficial benefit. The real reason is that it makes explicit the locations where assigned
variables are stored so that these locations can be shared by multiple procedures.

4. Boilerplate and Run-time Code

The boilerplate code and run-time code do not change.

5. Testing

A small set of invalid and valid tests for this assignment have been posted in testsl4.ss. You should make
sure that your compiler passes work at least on this set of tests.



6. Coding Hints

Before starting, study the output of the online compiler for several examples.



