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1. Background

Our ultimate objective for the semester is a compiler for the subset of Scheme described by the grammar
below. In the subset, constants are fixnums and booleans, and datums are fixnums, booleans, the empty list,
pairs of datums and vectors of datums. Fixnums are integers in a limited range to be determined by our
choice of representation. Primitives are the Scheme procedures *, +, -, <, <=, = >= > addl, subl, zero?,
boolean?, integer?, null?, pair?, procedure?, vector?, not, eq?, cons, car, cdr, set-car!, set-cdr!,
make-vector, vector-length, vector-ref, vector-set!, and void.

Expr —  constant
| (quote datum)
| var
| (set! wvar Ezxpr)
| (if Ezpr FEzpr)
| (if Expr FEzpr Expr)
| (begin Ezpr Expr*)
| (lambda (var*) Ezpr Exzpr*)
| (let ([war Exprl*) Ezpr Ezpr*)
| (letrec ([var Ezprl*) Expr Ezpr*)
| (primitive Expr*)
| (Expr Ezpr*)

In the first assignment, we wrote a compiler for a much smaller subset of Scheme that also happens, by design,
to be a parenthesized version of a small assembly language. Aside from the source-program verifier, our
Assignment 1 compiler consists of a code generator whose input is expressed in this parenthesized assembly
language, so that the code generator is little more than an assembly-code formatter. This is exactly what a
code generator should be. If we give more responsibility than this to the code generator, which is inherently
tied to a particular machine, retargeting the compiler to a different machine will require us to rewrite more
code than necessary. So, although our code generator will grow to handle a larger subset of x86_64 assembly
code, it will retain the flavor of an assembly-code formatter. Since our input language will become less and
less like assembly code as we generalize and expand it, we will need to add additional passes between the
source-program verifier and code generator to reduce the language to parenthesized assembly code.

Our general approach for the semester will be to expand the subset of Scheme handled by the compiler, and
sometimes to make the code generated by the compiler more efficient, via a process of successive refinement.
Each week, we will add new passes to the compiler, augment existing passes, or both.
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In this assignment, we begin this process by expanding the source language handled by our compilers a bit,
with the goal of making it closer to the final Scheme subset described above. Another goal of the assignment
is to expand the code generator so that it handles a larger subset of x86_64 assembly language. In a sense,
this is a secondary goal because we would not bother to expand the code generator if it were not necessary
to handle the larger language. On the other hand, the sooner we fill out the code generator, the sooner
we can declare it complete and move onto higher-level tasks. So our expanded source language is designed
with an eye toward feeding the code generator something close to the final version of parenthesized assembly
language we’ll need for it to handle in the end.

2. Scheme Subset 2

Here’s a grammar for the augmented subset of Scheme we’ll be handling this week.

Program —  (letrec ([label (lambda () Tail)1*) Tail)
Tasl —  (Triv)
| (begin Effect* Tail)
Effect —  (set! Var Triv)
| (set! Var (Binop Triv Triv))
Var —  reg | fvar
Triv —  Var | int | label

A register reg is a symbol naming one of the x86_64 registers rcx, rdx, rbx, rbp, rsi, rdi, |, r8, r9, r10,
ril, r12, r13, r14, and ri5.

A frame variable fvar is a symbol whose name is of the form fvindex, where indez is a nonempty sequence
of digits with no unnecessary leading zeros, e.g., £v0, fv3, or ful(0. The frame variables extend the original
limited set of register variables with an effectively unbounded set of variables.

A label label is a symbol whose name is of the form prefiz$suffiz, where suffiz is a nonempty sequence of
digits with no unnecessary leading zeros, e.g., £$0, minimal?$3, destroy-instance!$50, or $$$$17. Each
label must have a unique suffix but not necessarily a unique prefix, so £$1 and £$2 may be used in the same
program, but £$1 and g$1 cannot. Each label in the program should be bound by exactly one of the letrec
bindings.

An integer int is an exact integer.

A binary operator binop is one of +, -, *, logand, logor, and sra. Each of these except sra are ordinary
Scheme primitives; sra stands for “shift right arithmetic,” and a definition of it is given in helpers.ss.

The grammar expressions are still limited by the peculiar constraints of the x86_64 target architecture. In
particular:

e In (set! Var (op Trivy Trive)), Triv; must be identical to Var.
e A label cannot serve as either operand of a binary operator.

e In (set! Var Triv), if Triv is a label, Var must be a register. (This is because we need to use the
leaq instruction, which requires the destination to be a register.)

e In (set! Var Triv),if Triv is an integer n, either (a) —23! <n <231 —1 or (b) =263 <n <263 —1
and Var must be a register.

e For (set! Var (x Triv Triv)), Var must be a register.

e For (set! Var (sra Triv; Trivs)), Trivo must be an exact integer k, 0 < k < 63. Any other integer
operand n of a binary operator must be an exact integer, —23! <n <231 — 1.

e For (Triv), Triv must not be an integer.



We choose not to encode these machine constraints in the grammar because we want to leave open the
possibility that we may target other machines with different constraints in the future. In the long run, these
constraints will affect only the code generator, which gets to assume the constraints, and an instruction
selection pass, which enforces the constraints. For now, they also affect our verifier and, of course, the set of
test programs we can write.

3. Semantics

The 1lambda expressions in our new subset are used to create procedures, but these are not quite the same as
Scheme procedures. For one thing, the lambda expressions appear at the programs top level, like functions
in a C program. For another, the procedures do not take explicit arguments (though they can receive values
in registers and frame variables). Indeed, these procedures are merely labeled blocks of code, with the labels
specified by the letrec form. This is exactly what we can express directly in assembly code, so we are not
yet straying far from a parenthesized assembly language.

The calls in our new subset are limited as well, first because they have no argument expressions, and second
because they appear only in tail position—so that all calls are tail calls. Tail calls are sometimes referred
to as jumps with arguments. Our tail calls are jumps without arguments, i.e., simply jumps. Again, this is
exactly what we can express directly in assembly code.

To handle frame variables, the run-time system and boilerplate code cooperate to set the rbp register to the
base of a stack area, and to allow the Scheme code to return to the boilerplate, register r15 (our “return
address register”) is set to the address of a _scheme_exit label to which each program must jump (via a
tail call) to return back to the run-time system. (See Section 5.)

An interesting question is whether the language allows the expression of arbitrary computations, i.e,. whether
it is Turing complete. In particular, can it express programs that loop indefinitely, then terminate based on
some changing condition? Can it express, in some fashion, recursive procedures, despite the limitation that
all calls are tail calls? We will address these questions in lecture.

4. Things to do

To handle the new source language, we need to update the verifier, write two new passes to reduce the
source language to a parenthesized assembly language, and update the code generator. The two new
passes are expose-frame-var, which converts the frame variables fvar into explicit memory operands, and
flatten-program, which flattens the code into a straight sequence of labels and statements. These new and
modifed passes are described in Sections 4.1-4.4.

4.1. verify-scheme

This pass must be modified to reflect the structure of the new subset of Scheme, as well as the machine
constraints that restrict the syntax of the set! forms.

4.2. expose-frame-var

The job of expose-frame-variable is to convert occurrences of the the frame variables fug, fui, etc., into
displacement mode operands (see the X86_64 Primer), with rbp as the base register and an offset based on
the frame variable’s index. Since our words are 64 bits, i.e., 8 bytes, the offset for fv; should be 8i, e.g., 0,
8, 16, etc., for fuy, fui, fus, etc.

See Section 9 for a description of frames and frame variables and their place in the world.



The helpers.ss procedure make-disp-opnd should be used to construct displacement-mode operands. This
procedure is a product of the define-record form for disp-opnd, along with the predicate disp-opnd? and
the accessors disp-opnd-reg, and disp-opnd-offset.

Nothing else changes in this pass.

Example: The source program

(letrec ([f$1 (lambda ()
(begin
(set! fv0 rax)
(set! rax (+ rax rax))
(set! rax (+ rax fv0))

(r15)))1)
(begin
(set! rax 17)
(£$1)))

is converted to

(letrec ([f$1 (lambda (O
(begin
(set! #<disp rbp 0> rax)
(set! rax (+ rax rax))
(set! rax (+ rax #<disp rbp 0>))

(r15)) D
(begin
(set! rax 17)
(£$1)))

where #<disp reg offset> is the printed syntax of a displacement-mode operand.

4.3. flatten-program

This pass flattens out the now slightly nested structure of our source language into one that more closely
resembles assembly language, no letrec, no begin forms, calls turned into explicit jumps, and the names
of procedures turned into label forms. It produces a single code form containing a sequence of labels, effect
expressions, and jumps, with the code for the body of the letrec appearing first followed by the body of
each lambda expression in turn, prefixed by its label.

Example: The expose-frame-var output

(letrec ([f$1 (lambda (O
(begin
(set! #<disp rbp 0> rax)
(set! rax (+ rax rax))
(set! rax (+ rax #<disp rbp 0>))

(r15)))1)
(begin
(set! rax 17)
(£$1)))

is converted to the following.

(code
(set! rax 17)
(jump £$1)



£$1

(set! #<disp rbp 0> rax)

(set! rax (+ rax rax))

(set! rax (+ rax #<disp rbp 0>))
(jump r15))

4.4. generate-x86-64

This pass must be modified to handle the code form in place of the begin form (which is trivial) and to add
handling for labels, jumps, and the new operators logand, logor, and sra.

Example: The flatten-program output

(code
(set! rax 17)
(jump £$1)
£$1

(set! #<disp rbp 0> rax)

(set! rax (+ rax rax))

(set! rax (+ rax #<disp rbp 0>))
(jump r15))

is converted to the following.

movq $17, %rax
jmp L1

L1:
movq %rax, 0(%rbp)
addq Y%rax, %rax
addq 0(%rbp), Y%rax
jmp *%r1b

5. Boilerplate Code

The boilerplate has gotten more complicated, first because we realized there were some additional x86_64
registers we should have been preserving but weren’t (rbx and r12-r15), second because rbp must be set to
the base of the stack created by the run-time system (which it passes in the first C argument register, rdi),
and third because the return-address must be placed in register r15.

.globl _scheme_entry
_scheme_entry:

pushqg %rbx

pushq %rbp

pushq %ri2

pushq %r13

pushq %ril4d

pushq %ri5

movq %rdi, %rbp

leaq _scheme_exit(Yrip), %rib

generated code
_scheme_exit:

popq %rilb

popq %ri4



popq %ri3
popq %ri2
popq %rbp
popq %rbx
ret

6. Run-time system

The new run-time system is in the file runtime.c. It is more complicated than last week’s run-time system
because it takes care of creating storage for the stack and passing the address of the stack to the boilerplate
code to be set up as the initial value of the rbp register. It also sets up a heap area and passes the base of
the heap area as a second argument to the boilerplate code, which ignores it for now since we have no need
for a heap yet.

7. Coding hints

Even if you did not use match for the first assignment, you should use it for this one. Check out Using match
and the posted Assignment 1 solution al.ss to help you get started.

We have posted a set of helpers in helpers.ss, including the make-disp-opnd procedure described above,
register, frame-var, and label predicates, and our set of emit macros, which you’ll probably find quite handy.
The helpers are all documented at the top of the file.

8. Testing

A small set of invalid and valid tests for this assignment have been posted in tests2.ss. You should make
sure that your compiler passes work at least on this set of tests.

The registers and a default set of frame variables (£v0 through £v100) are predefined in helpers.ss to facilitate
testing. The frame variables are set up as macros that manipulate entries in a vector representing the stack,
based at the index stored in rbp. So, if rbp is set to zero, £v0 accesses the first element of the stack, fvi
the second, and so on.

9. More on frame variables

The 15 registers we have available are plenty for most procedures. After all, how many procedure actually
have more than 15 variables in use at the same time? Go look at the last 50 procedures you wrote. Chances
are, all of them could get by with 15 variables.

But what happens when a procedure does need more than 15 variables? What happens when a procedure
calls a second procedure, and the second calls a third, and so on, and the entire chain together requires more
than 15 variables? What happens if a procedure calls itself nontail-recursively to an indefinite depth? What
happens if a procedure calls a library procedure and has no idea how many or which registers the library
procedure uses?

The answer is that each procedure is given, when called, a bank of memory locations referred to as a
frame and, to support recursion, these frames are stored on a stack. There are many ways this can work.
For example, when called, a procedure might allocate all the space it might need by decrementing a stack
pointer, then release the space when it returns by incrementing the stack pointer. Or it might allocate and
release space on the stack as needed. In any case, the space occupied by a procedure at any given point in
its execution is considered the procedure’s frame at that point.



In our compiler, we will employ a frame pointer in place of a stack pointer, and the frame pointer will always
point at the base of the procedure’s frame. If the procedure makes a nontail call, it will make sure that any
variable values it may need to use when the nontail call returns are stored in its frame, adjust the frame
pointer to some point above the saved values, make the call, and finally adjust the frame pointer back to the
base of its own frame when the call returns.

We’ll have more to say about this process later. For now, the compiler does not need to support nontail
calls, so we don’t have to worry about adjusting the frame pointer. In essence, all we need is one single
frame, because each procedure can reuse its caller’s frame when called via a tail call.

We do, however, need to set aside one of our registers to use as a frame pointer, and for this we use the
register intended by the machine’s designer to be used for this purpose, the rbp register. We’ll assume that
the run-time system has provided space for the single frame we need, and that the boilerplate code has put
the address of the base of the frame in the bfp register.



