Assignment 3

Contents
1. Backgroundll 1
2. Scheme Subset 3c...oooeil 1
3. Semanticscccoooeiiiiiiiii 2
4. Things to doccooiiiii. 2
4.1. verify-scheme 2
4.2. finalize-locations 2
4.3. expose-frame-var 3
4.4. expose-basic-blocks 4
4.5. flatten-program 5
4.6. generate-x86-64 6
5. Boilerplate and Run-time Code 7
6. Coding hintscocoon. 7
7. Testingcoooviiviiiiiiiii, 7

1. Background

Up until now, we’ve had to use variable names like rax, r12, and fv3 in our code. These are hardly
mneumonic. We’ve also had to avoid asking questions, or do so using a form of dynamically constructed
jump table, as in the recursive factorial example in tests2.ss. This assignment partially address the former
problem with the addition of a new locate form and fully addresses the latter with the addition of if
expressions.

2. Scheme Subset 3

Here’s a grammar for the augmented subset of Scheme we’ll be handling this week.

Program (letrec ([label (lambda () Body)1*) Body)
Body (locate ([uvar Locl*) Tail)
Tail — (Triv)
|
|

—
—

(if Pred Tail Tail)
(begin Effect* Tail)
Pred — (true)
| (false)
| (relop Triv Triv)
| (if Pred Pred Pred)
| (begin Effect* Pred)
Effect — (nop)
| (set! Var Triv)
| (set! Var (binop Triv Triv))
| (if Pred Effect Effect)
| (begin FEffect* Effect)

Loc — reg | foar
Var — wwar | Loc
Triv — Var | int | label

A unique variable wvar is a Scheme variable with a suffix similar to that of a label, except that the suffix
is marked by “.” rather than of “$.” That is, a unique variable is a symbol whose name is of the form

(© 2009 R. Kent Dybvig, Andy Keep

prefix . suffiz, where suffix is a nonempty sequence of digits with no unnecessary leading zeros, e.g., £.0,
minimal?.3, or destroy-instance!.50. Within the same Body, each uvar must have a unique suffix but
not necessarily a unique prefix, so £.1 and £.2 may be used in the same Body, but £.1 and g.1 cannot.
Each uvar in a Body should be bound by exactly one of the locate bindings.

Registers (reg), frame variables (fvar), labels (label), integers (int), and binary operators (binop) are un-
changed from the preceding subset.

The grammar expressions are still limited by the constraints of the x86_64 target architecture, as described
in Assignment 2, with the additional similar constraints on the new relational operators implied by the
architecture.

3. Semantics

The locate expressions in our new subset look rather like let expressions, but rather than create new
locations, as let does, they create an alias from the LHS variable names to the RHS locations. In other
words, they say where each variable is stored. Each variable must be assigned a single location, so it must
appear at most once as an LHS of a given locate form. On the other hand, multiple variables may be
assigned to the same location, i.e., both x and y can be located in register rbx. Of course, the programmer
should ensure that this happens only when the variables are not live at the same time or when the variables
are known to hold the same value where they are live at the same time. (A variable is live when it may yet
be referenced.)

The if expressions in our new subset work just like if expressions in Scheme except that the set of predicate
expressions is somewhat limited. A predicate can be the nullary operator (true), the nullary operator
(false), a binary relational operator, an if expression whose then and else parts are predicates, or a begin
expression whose last subexpression is a predicate.

A predicate cannot be a variable reference or a procedure call. The reason for this is simple: we want
our intermediate language to be independent of the original source language and thus independent of any
particular representation of true and false values. For us to make sense of a variable reference or procedure
call in predicate position, we’d have to commit to such a representation.

4. Things to do

To handle the new source language, we need to update the verifier; add a new pass to replace each uvar
occurrence with the corresponding location; update expose-frame-var to handle if expressions, predicate
expressions, and begin expressions in effect context; add a new pass, expose-basic-blocks, that rewrites
the program to restore the property that jumps appear only in tail context, and modify flatten-program and
the code generator to handle conditional jumps. These new and modifed passes are described in Sections 4.1-
4.6.

4.1. verify-scheme

This pass must be modified to reflect the structure of the new Scheme subset.

4.2. finalize-locations

This pass replaces each occurrence of a uvar in the body of each locate form with the corresponding Loc.
It also discards the locate form. A grammar for the output of this pass is shown below.

Program — (letrec ([label (lambda () Tail)1*) Tail)
Tasl — (Triv)

(if Pred Tail Tail)

(begin FEffect* Tail)
Pred (true)

|
|
—
| (false)
| (relop Triv Triv)
| (if Pred Pred Pred)
| (begin Effect* Pred)
N
|
|
|
|

Effect (nop)
(set! Loc Triv)
(set! Loc (binop Triv Triv))
(if Pred Effect Effect)
(begin FEffect* Effect)

Loc — reg | foar

Triv — Loc | int | label

Example: The source program

(letrec ([f$1 (lambda (O
(locate ([x.1 r8] [y.2 r9])
(if (if (= x.1 1) (true) (> y.2 1000))

(begin (set! rax y.2) (r1b))

(begin
(set! y.2 (x y.2 2))
(set! rax x.1)
(set! rax (logand rax 1))
(if (= rax 0) (set! y.2 (+ y.2 1)) (nop))
(set! x.1 (sra x.1 1))
(£$1))30)1)

(locate () (begin (set! r8 3) (set! r9 10) (£$1))))

is converted to the following.

(letrec ([f$1 (lambda ()
(if (if (= r8 1) (true) (> r9 1000))

(begin (set! rax r9) (r15))

(begin
(set! r9 (* r9 2))
(set! rax r8)
(set! rax (logand rax 1))
(if (= rax 0) (set! r9 (+ r9 1)) (nop))
(set! r8 (sra r8 1))
(£$1))))1)

(begin (set! r8 3) (set! r9 10) (£$1)))

This example is contrived to contain, in addition to a nonempty locate form, if expressions in all three
contexts where they are valid: Tail, Pred, and Effect. We will use it as a running example for the new and
significantly updated passes.

4.3. expose-frame-var

Depending on how you wrote this pass, it may need to be modified to reflect the structure of the grammar
for the output of finalize-locations. It need not handle locate forms, which were discarded by the

preceding pass.

If you coded this pass as a simple tree walk that is independent of the grammatical structure, you should
not need to make any changes.

4.4. expose-basic-blocks

The goal of this pass is to reduce the language to essentially the same language we had as input to
flatten-program last week, with the addition of a limited form of if expressions in tail context, where
they amount to two-way conditional jumps. Along the way, it must introduce new labels to handle the
conditional control flow and bind these labels in the top-level letrec to procedures that represent the code
to be executed at the target of each jump.

The following grammar describes the intermediate language of programs output from this pass.

Program — (letrec ([label (lambda () Tail)1*) Tail)

Tail — (Triv)
| (if (relop Triv Triv) (,label) (,label))
| (begin Effect* Tail)

Effect — (set! Loc Triv)
| (set! Loc (binop Triv Triv))

Loc — reg | disp-opnd

Triv — Loc | int | label

Compare this grammar with the previous one, and you’ll see the following.

e Tuil expressions have changed subtly in that the then and else parts of an if expression are no longer
arbitrary Tail expressions but rather calls (jumps) to labels.

e Pred expressions are gone. The only surviving remnant is the relop call in the test part of an if
expression.

e FEffect expressions are simplified back down to the two forms of assignment.

We call this pass expose-basic-blocks because the pass effectively converts the incoming code containing
arbitrarily nested if and begin expressions into code that contains only basic blocks, which are sequences
of code entered only at the top and exited only at the bottom. There are several interesting optimizations
that can be done with basic blocks, and we will undertake one or two before long.

Here’s what the code for the running example program should look like after expose-basic-blocks:

(letrec ([f$1 (lambda () (if (= r8 1) (c$8) (a$9)))]
[c$8 (lambda () (c$6))]
[a$9 (lambda () (if (> r9 1000) (c$6) (a$7)))]
[c$6 (lambda () (begin (set! rax r9) (r15)))]
[a$7 (lambda ()
(begin

(set! r9 (* r9 2))

(set! rax r8)

(set! rax (logand rax 1))

(Aif (= rax 0) (c$3) (a$4))))]
[c$3 (lambda () (begin (set! r9 (+ r9 1)) (j$5)))]
[a$4 (lambda () (j$5))]
[j$5 (lambda () (begin (set! r8 (sra r8 1)) (£$1)))1)

(begin (set! r8 3) (set! r9 10) (£$1)))

Study this carefully and prove to yourself that it (a) performs the same computation as the input program
and (b) is in the form required by the output grammar.

So we know what programs look like on input to this pass, and we know what they should look like on
exit from the pass. The challenge, as always, is getting from the previous grammar to the new one while
preserving the semantics of the input program. We will discuss this in lecture, but the following suggestions
should help get you started.

e Each of the helpers for processing Tail, Pred, and Effect expressions may create new label bindings,
so each needs to return a list of bindings as well as the output expression. The code can return these
two values using the values procedure and receive them using either the match “cata” syntax or
let-values. The labels should be created with the helpers.ss procedure unique-label.

e The Pred helper will need to be passed “true” and “false” labels. If the Pred helper encounters a
call to a relational operator, it should generate a two-way conditional jump to the labels. It can do
something much easier if it encounters (true) or (false).

e The Effect helper will need to be passed a list of the output expressions that follow it so that, if the
effect expression is an if expression, it can package up the code that follows and label it for use as a
“join” point for the then and else parts of the if expression.

4.5. flatten-program

This pass must be extended to handle two-way conditional (if) expressions as well as unconditional jumps
in tail context, converting them into the equivalent of assembly-language single-label compare-and-branch
instructions. It should also be modified to take into account the label of the next letrec binding, if any, so
that it does not produce unnecessary jumps.

The new jumps should be in one of the following two forms.

(if (relop Triv Triv) (label))
(if (not (relop Triv Triv)) (label))

flatten-program should choose which form to use based on the targets of the jump. If one is the same label
as the label of the next letrec binding to be processed, flatten-program should produce a conditional
jump to the other, introducing the not wrapper on the relational operator call if necessary, i.e., when
jumping to the “false” label. If neither is the same as the label of the next letrec binding to be processed,
it should produce a conditional jump to one followed by an absolute jump to the other. For example,
(if (< rax 3) (1%1) (1$2)) should produce

(if (< rax 3) (jump 1%1))

if 1$2 is the label of the next letrec binding, and

(if (not (< rax 3)) (jump 1$2))

if 1$1 is the label of the next letrec binding. It should produce either

(if (< rax 3) (jump 1$1))
(jump 1$2)

or

(if (not (< rax 3)) (jump 1$2))
(jump 1$1)

if neither 1$1 nor 1$2 is the label of the next letrec binding.

The code for handling unconditional jumps should also compare its jump target with the label of the next
letrec binding to be processed. If it is the same, it should suppress the jump to avoid code sequences such
as the following.

(Gump 1$7)

137

The label should not be suppressed, since it may be the target of a different jump.

In some cases, will result in two consecutive labels appearing in the output, and we can still end up with

code like the following;:

(jump 1$7)

1$6

1$7

This is okay—we’ll soon be adding an optimization pass that should prevent this situation from arising.

Example: The flatten-program output for the running example is shown below.

(code
(set! r8 3)
(set! r9 10)
£$1
(if (not (= r8 1)) (jump a$9))
c$8
(jump c$6)
a$9
(if (not (> r9 1000)) (jump a$7))
c$6
(set! rax r9)
(jump ri15)
a$7

(set! r9 (* r9 2))

(set! rax r8)

(set! rax (logand rax 1))

(if (not (= rax 0)) (jump a$4))

c$3

(set! r9 (+ r9 1))
(jump j$5)

a$s

j$5

(set! r8 (sra r8 1))
(jump £$1))

4.6. generate-x86-64

This pass must be modified to handle the conditional jump forms now produced by flatten-program, using
the cmpq and conditional jump instructions je, jne, j1, jle, jg, and jge.

Example: The flatten-program output for the running example is shown below, without the boilerplate.

movq $3, %r8

movq $10, %r9
L1:

cmpq $1, %r8

jne L9

L8:
jmp L6

L9:
cmpq $1000, %r9
jle L7

L6:
movq %r9, %rax
jmp *%r1b

L7:

imulq $2, %r9
movq %r8, %rax
andq $1, %rax
cmpq $0, %rax

jne L4

L3:
addq $1, %r9
jmp L5

L4:

L5:
sarq $1, %r8
jmp L1

5. Boilerplate and Run-time Code

The boilerplate and run-time code does not change.

6. Coding hints

Again, we strongly encourage you to use match. Take a look at the partial Assignment 2 solution for some
ideas how to use match’s “cata” and extended quasiquote to work to avoid some of the explicit mapping and
appending you may have done in your Assignment 2 solution.

7. Testing

A small set of invalid and valid tests for this assignment have been posted in tests3.ss. You should make
sure that your compiler passes work at least on this set of tests.

We strongly encourage you to use the posted driver to automate your testing process.

