Assignment 4

Modified Mon Feb 2 21:36:16 EST 2009

Contents
1. Backgroundcoco 1
1.1. Live Analysiscoooeviiinii. 1
1.2. Register Assignment 7
1.3. Live Set Representation 8
1.4. Conflict Graph Representation 8
2. Scheme Subset 4 ... 9
3. Semanticscooeeiiiiiiiii 9
4. Things to dooevviiiiiiiiiii 9
4.1. verify-schemecooocll 10
4.2. uncover-register-conflict 10
4.3. assign-registers 10
4.4. discard-call-livec..cooeenen. 11
5. Boilerplate and Run-time Code 11
6. Testingcooovviiiiiiiiii 12
7. Coding Hintsccoooiiiiiinn. 12

1. Background

In this assignment, we turn the job of allocating regsiters for our local variables over to the compiler, while
still allowing ourselves to assign and reference register and frame variables explicitly. The compiler will use
a graph-coloring register allocator.

Graph-coloring register allocation is based on the problem of coloring directly connected nodes of a graph
different colors, just as we might color adjacent geographic regions on a map different colors. With a
graph-coloring register allocator, the nodes of the graph are variables and registers, the links between nodes
represent conflicts between variables and registers, and the colors are specific registers, e.g., rax or r12. So
the idea is that we are trying to assign different registers to conflicting variables, but pack those that do not
conflict together where possible so that we can locate as many variables in registers as we can.

A conflict between two variables means we cannot assign both to the same register, and a conflict between
a variable and a register means we cannot assign the variable to the register. The first step of the algorithm
is to determine where conflicts exist. We do this via live analysis.

1.1. Live Analysis

Two variables or a variable and a register conflict if:

a. one is in use (live) at some point where the other is assigned

b. the assignment isn’t a simple move from one to the other

To see why this is the case, imagine that we are considering assigning two variables z and y to the same
register. If, over the span of instructions where z is in use, there is no assignment to y, then we know that
putting y in the same register will not wipe out z. If y is assigned within the span of instructions where x
is in use, however, the assignment has the potential to wipe out the value in z, unless it happens that the
value being stored in y is the same value as is already stored in z, which we generally know to be the case
only if the assignment is a straight assignment of z to y.

(© 2009 R. Kent Dybvig, Andy Keep

A variable or register is in use, or live, at any given point, if the variable’s value might yet be needed by
the program. In general, this is an undecidable property, so we conservatively assume that the variable is
live if we cannot prove that it is not live. The traditional conservative approximation, which we use, is that
a variable is live at a given point if any reference to the variable occurs along any flow of control from the
given point before the variable is killed (overwritten) by an intervening assignment to the variable.

Consider the following example.

(begin
(set! a r8)
(set! b fv0)

(set! ¢ (+ a 2))

(if (< ¢ 0) (nop) (set! c (+ c b)))
(set! rax (+ c 1))

(r15 rax rbp))

At the point where a is assigned, neither b nor c is live. The values in those variables, if any, cannot be used,
since they are overwritten by assignments before any references occur. At the point where b is assigned, a
is live, since it is referenced after that point, but c is not. At the point where c is assigned, b is live but a
is not.

Since a is live where b is assigned, and it is not a straight assignment of b to a, a and b conflict. Similarly, b
and c conflict, because c is assigned where b is live. But a and ¢ do not conflict, since neither is live where
the other is assigned. Thus, it is possible to put a and c in the same register, but not a and b or b and c.

Because the liveness of a variable is determined by whether it may yet be referenced, live analysis is performed
backward along the flow of control from the leaves of a computation. We’ll perform live analysis on one
procedure at a time, so the leaves in our case are tail calls, which now list the set of locatons considered
live at the point of the call. As the analysis works backward from the tail calls, it adds variables and
registers when it sees references to them and removes variables and registers when it sees assignments to
them. When operating on an if expression, it computes the live sets separately for the consequent and
alternative. Because we don’t know which will be executed, variables live in either should be considered live
on exit from the test expression, so the natural approach is to union the two sets together before proceding
upward along the flow of control in the test part. (We can do something a bit more clever than this, as we’ll
discuss later.)

Assuming the example above is the entire body of a procedure, live analysis proceeds from bottom to top
as follows.

1. The live set is initialized to {rax,rbp}, which is the set of variables listed as live in the tail call.

instruction live after instruction | live after RHS
(set! a r8)
(set! b fv0)
(set! ¢ (+ a 2))
(if (< c 0)
(nop)
(set! ¢ (+ ¢ b))
(set! rax (+ c 1))
— (r15 rax rbp)) {rax,rbp}
conflicts for a: {}, b: {}, c: {}

2. To this is added r15, since it is referenced by the tail call.

instruction
(set! a r8)
(set! b fv0)
(set! ¢ (+ a 2))
(if (< c 0)
(nop)
(set! ¢ (+ ¢ b))
(set! rax (+ c 1))
(r15 rax rbp))

—

live after instruction

{rax,rbp,r15}
{rax,rbp}

live after RHS

conflicts for a: {}, b: {}, c: {}

3. The assignment to rax kills rax, removing it from the set of variables and registers live after the assignment.
No conflicts are added at this point because the LHS is a register and no variables appear in the live set.

instruction
(set! a r8)
(set! b fv0)
(set! ¢ (+ a 2))
(if (< c 0)
(nop)
(set! ¢ (+ ¢ b))
(set! rax (+ c 1))
(r15 rax rbp))

live after instruction

{rax,rbp,r15}
{rax,rbp}

live after RHS

{rbp,ri5}

conflicts for a: {}, b: {}, c: {}

4. Since the right-hand side of the assignment references c, we add c¢ to the set. This set is used both for
the consequent and alternative of the if.

instruction live after instruction | live after RHS
(set! a r8)
(set! b £v0)
(set! ¢ (+ a 2))
(Af (K c 0)
(nop) {rbp,r15,c}
(set! ¢ (+ c b))) | {rbp,ri5,c}
— (set! rax (+ c 1)) {rax,rbp,r15} {rbp,ri5}
(r15 rax rbp)) {rax,rbp}

conflicts for a: {}, b: {}, ¢: {}

5. The assignment in the alternative kills c. r15 and rbp are live here, where c is assigned, so we record
that ¢ conflicts with r15 and rbp.

instruction live after instruction | live after RHS
(set! a r8)
(set! b fv0)
(set! ¢ (+ a 2))
(if (< c 0)
(nop) {rbp,r15,c}

— (set! ¢ (+ ¢ b)) | {rbp,ri5,c} {rbp,r15}
(set! rax (+ c 1)) {rax,rbp,ri5} {rbp,r15}
(r15 rax rbp)) {rax,rbp}

conflicts for a: {}, b: {}, c: {r15,rbp}

6. The right-hand-side add c back, along with b.

instruction

(set! a r8)

(set! b £v0)

(set! ¢ (+ a 2))

(if (< c 0)
(nop)

before alternative:

— (set! ¢ (+ ¢ b)))
(set! rax (+ c 1))

(r15 rax rbp))

live after instruction

{rbp,ri5,c}
{rbp,ri5,c,b}
{rbp,r15,c}
{rax,rbp,ri5}
{rax,rbp}

live after RHS

{rbp,r15}
{rbp,r15}

conflicts for a: {}, b: {}, c: {r15,rbp}

7. The nop doesn’t remove or add anything, so the set before the consequent is the same as the set after.

instruction

(set! a r8)

(set! b £v0)

(set! ¢ (+ a 2))

(if (< c 0)

before consequent:
— (nop)

before alternative:

(set! ¢ (+ c b))

(set! rax (+ c 1))
(r15 rax rbp))

live after instruction

{rbp,r15,c}
{rbp,r15,c}
{rbp,ri5,c,b}
{rbp,ri5,c}
{rax,rbp,r15}
{rax,rbp}

live after RHS

{rbp,ri5}
{rbp,r15}

conflicts for a: {}, b: {}, c: {r15,rbp}

8. The union of the consequent and alternative sets is used for < call.

instruction
(set! a r8)
(set! b £v0)
(set! ¢ (+ a 2))
(if (< c 0)
— before consequent:
(nop)
— before alternative:

(set! ¢ (+ c b))

(set! rax (+ c 1))
(r15 rax rbp))

live after instruction

{rbp,r15,c,b}
{rbp,r15,c}
{rbp,r15,c}
{rbp,ri5,c,b}
{rbp,ri5,c}
{rax,rbp,ri5}
{rax,rbp}

live after RHS

{rbp,ri5}
{rbp,r15}

conflicts for a: {}, b: {}, c: {r15,rbp}

9. The predicate adds c, but c is already there, so the set does not change.

instruction
(set! a r8)
(set! b fv0)

(set! ¢ (+ a 2))
— (if (< c 0)
(nop)

(set! ¢ (+ c b)))

(set! rax (+ c 1))
(r15 rax rbp))

live after instruction

{rbp,r15,c,b}
{rbp,r15,c,b}
{rbp,r15,c}
{rbp,r15,c}
{rax,rbp,r15}
{rax,rbp}

live after RHS

{rbp,r15}
{rbp,ri5}

conflicts for a: {}, b: {}, c: {r15,rbp}

10. The assignment kills c. r15, rbp, and b are live here, where c is assigned. We already know that c

conflicts with r15 and rbp, but we now also know that ¢ conflicts with b and b conflicts with c.

instruction
(set! a r8)
(set! b fv0)
— (set! ¢ (+ a 2))
(if (< c 0)
(nop)
(set! ¢ (+ ¢ b))
(set! rax (+ c 1))
(r15 rax rbp))

live after instruction

{rbp,r15,c,b}
{rbp,r15,c,b}
{rbp,ri5,c}
{rbp,ri5,c}
{rax,rbp,ri5}
{rax,rbp}

live after RHS

{rbp,r15b}

{rbp,ri5}
{rbp,r15}

conflicts for a: {}, b: {c}, c¢: {b,r15,rbp}

11. The right-hand side adds a.

instruction
(set! a r8)
(set! b fv0)
— (set! ¢ (+ a 2))
(if (< c 0)
(nop)
(set! ¢ (+ ¢ b))
(set! rax (+ c 1))
(r15 rax rbp))

live after instruction

{rbp,ri5b,a}
{rbp,r15,c,b}
{rbp,r15,c,b}
{rbp,r15,c}
{rbp,r15,c}
{rax,rbp,r15}
{rax,rbp}

live after RHS

{rbp,r15,b}

{rbp,r15}
{rbp,ri5}

conflicts for a: {}, b: {c}, c: {b,r15,rbp}

12. The assignment kills b. r15, rbp, and a are live here, where b is assigned, so we record that b conflicts

with r15, rbp, and a and that a conflicts with b.

instruction
(set! a r8)
— (set! b fv0)
(set! ¢ (+ a 2))
(if (< c 0)
(nop)
(set! ¢ (+ ¢ b))
(set! rax (+ ¢ 1))
(r15 rax rbp))

live after instruction

{rbp,r15,b,a}
{rbp,ri5,c,b}
{rbp,ri5,c,b}
{rbp,r15,c}
{rbp,r15,c}
{rax,rbp,ri5}
{rax,rbp}

live after RHS
{rbp,r15,a}
{rbp,ri5,b}

{rbp,r15}
{rbp,r15}

conflicts for a: {b}, b: {r15,rbp,a,c}, c: {b,r15,rbp}

13. The right-hand side adds nothing, since we ignore frame variables.

instruction
(set! a r8)
— (set! b fv0)
(set! ¢ (+ a 2))
(if (< c 0)
(nop)
(set! ¢ (+ ¢ b))
(set! rax (+ c 1))
(r15 rax rbp))

live after instruction
{rbp,r15,a}
{rbp,r15b,a}
{rbp,r15,c,b}
{rbp,ri5,c,b}
{rbp,ri5,c}
{rbp,ri5,c}
{rax,rbp,r15}
{rax,rbp}

live after RHS
{rbp,r15,a}
{rbp,r15,b}

{rbp,ri5}
{rbp,r15}

conflicts for a: {b}, b: {r15,rbp,a,c}, c: {b,r15,rbp}

14. The assignment kills a. r15 and rbp are live here, where a is assigned, so we record that a conflicts with
r15 and rbp.

instruction live after instruction | live after RHS
— (set! a r8) {rbp,r15,a} {rbp,r15}

(set! b fv0) {rbp,r15b,a} {rbp,r15,a}
(set! ¢ (+ a 2)) {rbp,r15,c,b} {rbp,r15,b}
(if (< c 0) {rbp,r15,c,b}

(nop) {rbp,ri5,c}

(set! ¢ (+ ¢ b))) | {rbp,ri5,c} {rbp,ri5}
(set! rax (+ ¢ 1)) {rax,rbp,ri5} {rbp,r15}
(r15 rax rbp)) {rax,rbp}

conflicts for a: {r15,rbp,b}, b: {r15,rbp,a,c}, c: {b,r15,rbp}

15. The right-hand side adds r8, so the live set on entry contains rbp, r15, r8. If it contained anything
other than registers, this would indicate a bug in our source program.

instruction live after instruction | live after RHS
on entry {rbp,r15,r8}

— (set! a r8) {rbp,r15,a} {rbp,r15}
(set! b fv0) {rbp,r15b,a} {rbp,r15,a}
(set! ¢ (+ a 2)) {rbp,r15,c,b} {rbp,r15,b}
(if (< c 0) {rbp,ri5,c,b}

(nop) {rbp,ri5,c}

(set! ¢ (+ ¢ b))) | {rbp,ri5,c} {rbp,ri5}
(set! rax (+ ¢ 1)) {rax,rbp,ri5} {rbp,r15}
(r15 rax rbp)) {rax,rbp}

conflicts for a: {r15,rbp,b}, b: {r15,rbp,a,c}, c: {b,r15,rbp}

The live analysis is now complete, and we have our final conflict sets:

a: {ri5b}
b: {c,ri5,a}
c: {ri5)p}

There are some important things to note:

e A variable never appears in its own conflict set. In order for it to appear, it would have to be assigned
where it is live, but as soon as it is assigned, it becomes dead. So by using the live set in the interval
between the computation of the right-hand side of the assignment and the assignment itself, we avoid
having to do anything special to remove self conflicts. For example, when handling the assignment
(set! ¢ (+ ¢ b)), we first remove ¢ from the running live set, then record the conflicts between c
and any registers and variables left in the live set, then add c back, along with b.

e We don’t maintain conflict sets for registers. Registers are fixed; we can’t, for instance, decide to locate
r8 in rax. So the register allocator will never need to ask with which other registers and variables a
register conflicts.

e In the example above, it happens that r8 is not live at the point where a is assigned to r8. Even if r8
were live, we would not add r8 to a’s conflict set, since the assignment is a straight move of one to the
other.

e The set of conflicts we record at an assignment depends only on the left-hand-side variable and the
set of variables that are live just before the assignment occurs. The set of variables referenced on the
right-hand side are irrelevant when determining conflicts. So when we saw (set! ¢ (+ ¢ b)) we did
not add a conflict between b and ¢, though we would have if b had been live at that point.

e It is possible for a variable to be assigned at some point where it is not live. If this occurs, we could
discard the assignment and ignore any variable and register references on the right-hand side of the
assignment. If we do this, we’ll usually end up with fewer conflicts. We don’t bother however, and in-
stead assume that some earlier, possibly optional, optimization pass has discarded useless assignments.
In general, we don’t want to complicate our required passes by performing optimizations, and we want
to give users of our compiler the choice of whether optimizations should be enabled.

While simply unioning the consequent and alternative live sets before processing the predicate of an if
expression will work, we can gather more precise live information in the presence of the boolean constants
(true) and (false) by maintaining separate true and false live sets in predicate context. For all if
expressions, we pass our predicate handler two live sets, a true live set (from the consequent expression)
and a false live set (from the alternative expression). The handler propagates the two sets through to the
consequent and alternative of any nested if expression and the last subexpression of any nested begin
expression. If it finds (true) or (false), it returns the true live set or the false live set accordingly. In the
only other case, that of a predicate primitive call, it must union the two sets before processing the call, since
the boolean value of the primitive call is unknown.

This pays off when variable references occur in dead code because the entire test expression is a constant,
i.e., in the following cases.

(if (true) e; e3)
(if (false) e; e3)

In the first case, only those variables live on entry to e; will be shown live on entry to the if expression, while
in the second case, only those variables live on entry to es will be shown live on entry to the if expression,

If this were the only benefit, we would not bother, since we assume that such expressions would have been
simplified by some earlier optimization pass, if desired. It also, however, pays off in more subtle cases like
the one below.

(if (if e
(begin ey (false))
63)
€4
65)

Since ey cannot be reached from code that passes through e, the set of variables that are live after ey
includes only those that are live going into e;. By returning only the false live set for the occurrence of
(false) just after e; we ensure that these are the only variables to make it through.

1.2. Register Assignment

The register assignment algorithm takes two inputs: a list of variables and a conflict table. It returns a list
of register assignments for all or some of the variables. It is most easily described recursively as follows.

e If the list of variables is empty, return an empty list of register assignments.

e Pick a low-degree variable (either spillable or unspillable) from the list of variables, if one exists.
Otherwise pick any spillable variable. A low-degree variable is one that conflicts with with fewer than
k variables or registers in the current conflict table.

e Recur with the picked variable removed from the list of variables and the picked variable removed from
the conflict lists of the other variables in the conflict table. (Thus, we expect the recursive call assign
registers to a list one shorter with a conflict graph that possibly has fewer conflicts.) The recursive
call should return a list of register assignments for (at least some of) the remaining variables.

e Attempt to select a register for the picked variable, avoiding any registers the picked variable conflicts
with and any registers to which a conflicting variable is assigned in the list of register assignments
returned by the recursive call. This step will succeed if a low-degree variable is picked, and may or
may not succeed otherwise. If it succeeds, add the assignment to the list of register assignments and
return the updated list. Otherwise return the non-updated list.

This algorithm is an adaptation of the optimistic register allocation described in “Improvements to graph
coloring register allocation” (ACM TOPLAS 6:3, 1994) by Preston Briggs, et al.

If the list of register assignments returned by the register allocator contains an assignment for each variable
in the original set of variables, the register allocator has succeeded. Otherwise, the register allocator has
failed, and the set of variables for which the list does not contain assignments must be spilled, i.e., assigned
frame locations. We are not handling frame allocation at present, so the register allocator should simply
error out with an appropriate message if this happens.

1.3. Live Set Representation

A live set is most easily represented in Scheme as a list of variables and registers with no duplicates. There
are more efficient representations for sets, and we’d want to use one of them in a production compiler,
but lists will do for our purposes. Procedures for dealing with sets are in the latest version of helpers.ss:
set-cons, which adds a single element to a set, union, which unions two or more sets, intersect, which
intersects two or more sets, and difference, which returns the difference between two sets.

1.4. Conflict Graph Representation

A conflict graph is most easily represented in Scheme as an association list mapping each variable to a list
of the variables and registers with which it conflicts. For example,

((a r15 rbp b)
(b r15 rbp a c)
(c b r15 rbp))

represents the conflict sets derived for the example in the preceding section. The represention is redundant
in that conflicts between two variables are listed twice, once for each variable, but the efficiency with which
the conflicts of a particular variable can be determined more than makes up for the cost of maintaining the
redundant information.

The set operations can be used along with assq and set-cdr! to manipulate conflict graphs represented in
this manner.

Again, we would probably choose a more efficient (and complicated) representation in a production compiler,
but this representation will do for our purposes.

2. Scheme Subset 4

Here’s a grammar for the augmented subset of Scheme we’ll be handling this week.

Program — (letrec ([label (lambda () Body)1*) Body)
Body — (locals (uwar*) Tail)
Tasil — (Triv Loc*)
| (if Pred Tail Tail)
| (begin Effect* Tail)
Pred — (true)
| (false)
| (relop Triv Triv)
| (if Pred Pred Pred)
| (begin Effect* Pred)
Effect — (nop)
| (set! Var Triv)
| (set! Var (binop Triv Triv))
| (if Pred Effect Effect)
| (begin Effect* Effect)

Loc — reg | foar
Var — wwar | Loc
Triv — Var | int | label

The only changes are (1) the locate form has been replaced with a locals form that lists unique variables
but no locations, and (2) a list of locations Loc* is now included in each tail call.

Unique variables (uvar), registers (reg), frame variables (fvar), labels (label), integers (int), and binary
operators (binop) are unchanged from the preceding subset.

Each wvar in a Body should appear exactly once in the locals list.

The grammar expressions are still limited by the constraints of the x86_64 target architecture, as described
in the previous assignments.

3. Semantics

The locals form is like the locate form in that it declares a set of unique variables. It doesn’t specify a set
of locations, however, since it’s the compiler’s responsibility to assign locations to the variables in the locals
list.

The locations Loc* listed in each call specify the set of locations presumed to be needed at the target of
the jump. For a call representing a return, this will usually include the return-value register, rax. For a
call representing a tail call, it will include the locations of the arguments. In both cases, rbp should also be
listed, unless the entire program makes no use of frame variables. The order of the locations in the list is
unimportant.

4. Things to do

To handle the new source language, we need to update the verifier and add three new passes: one to
perform live analysis and build a conflict graph, a second to assign registers, and a third to discard the Loc*
list included in each call. The three new passes follow verify-scheme and precede finalize-locations.
These new and modifed passes are described in Sections 4.1-4.4.

4.1. verify-scheme

This pass must be modified to reflect the structure of the new Scheme subset.

4.2. uncover-register-conflict

This pass inserts into the output a conflict graph listing for each wvar in the locals list a list of the other
unique variables and registers with which it conflicts, i.e., with which it cannot share a register. It makes no
other changes to the program.

A grammar for the output of this pass is shown below.

Program — (letrec ([label (lambda () Body)1*) Body)
Body — (locals (uwar*)
(register-rconflict conflict-graph Tail))
(Triv Loc*)
(if Pred Tail Tail)
(begin Effect* Tail)
(true)
(false)
(relop Triv Triv)
(if Pred Pred Pred)
(begin Effect* Pred)

—_—
|
|
—_—
|
|
|
|
Effect — (nop)
|
|
|
|
—_—
—
—

Tail

Pred

(set! Var Triv)

(set! Var (binop Triv Triv))
(if Pred Effect Effect)
(begin FEffect* Effect)

reg | foar

wvar | Loc

Var | int | label

Loc
Var
Triv

A conflict-graph should be an association list mapping each variable in the locals list to a list of conflicting
variables and registers, as described in Section 1.4.

Use the online compiler to generate example cases.

4.3. assign-registers

This pass attempts to assign register to each wvar in the locals list, using the register assignment algorithm
described in Section 1.2. The set of available registers is given by the registers list defined in helpers.ss.

If successful, it records the register assignments in an output locate form and removes the locals and
register-conflict forms. It makes no other changes to the program.

The grammar for the output of this pass is the almost same as the grammar for the source language of
Assignment 3. The only differences are the Loc* list included in each call, which will be discarded by the
following pass, and the replacement of arbitrary locations Loc on the right-hand sides of locate bindings
with registers.

10

Program — (letrec ([label (lambda () Body)1*) Body)
Body — (locate ([uvar regl*) Tail)
Tail — (Triv Loc*)
| (if Pred Tail Tail)
| (begin Effect* Tail)
Pred — (true)
| (false)
| (relop Triv Triv)
| (if Pred Pred Pred)
| (begin Effect* Pred)
Effect — (nop)
| (set! Var Triv)
| (set! Var (binop Triv Triv))
| (if Pred Effect Effect)
| (begin FEffect* Effect)

Loc — reg | fvar
Var — wwar | Loc
Triv — Var | int | label

Use the online compiler to generate example cases.

4.4. discard-call-live

This pass discards the Loc* list included in each call. The grammar for the output of this pass is the
essentially same as the grammar for the source language of Assignment 3. The only difference is that
the locate form right-hand sides are registers rather than Locs (registers or frame variables). This minor
difference should not precipitate any changes to the that come after this one.

Program — (letrec ([label (lambda () Body)1*) Body)
Body — (locate ([wvar regl*) Tail)
Tail — (Triv)
| (if Pred Tail Tail)
| (begin Effect* Tail)
Pred — (true)
| (false)
| (relop Triv Triv)
| (if Pred Pred Pred)
| (begin Effect* Pred)
Effect — (nop)
| (set! Var Triv)
| (set! Var (binop Triv Triv))
| (if Pred Effect Effect)
| (begin Effect* Effect)

Loc — reg | foar
Var — wwvar | Loc
Triv — Var | int | label

5. Boilerplate and Run-time Code

The boilerplate and run-time code does not change.

11

6. Testing

A small set of invalid and valid tests for this assignment have been posted in tests4.ss. You should make
sure that your compiler passes work at least on this set of tests.

7. Coding Hints

Here are some quick hints:

e If you add conflicts to the conflict table destructively, i.e., use set-cdr! after finding the proper
association, the helpers of uncover-register-conflict need to return just one value, the set of live
variables. They do not need to return an expression, since the body code doesn’t change. (The only
change is the addition of the register-conflict form.)

e There’s no need for assign-registers to venture into the code of a body; it uses only the locals list
and the register-conflict table, and it doesn’t make any changes to the code other than wrapping
it with the locate form and discarding the other wrappers.

e While discard-call-1ive does need to venture into Tail expressions, it does not need to venture into
Effect and Pred expressions.

12

