Assignment 6

Modified Thu Feb 19 12:25:42 EST 2009

Contents
1. Backgroundcco 1
2. Calling Conventionsccccoeeeun... 1
3. Scheme Subset 6cccoociiiini 2
4. Semanticscooiiiiiiiiiii 3
5. Things to docoocoiiiiii 3
5.1. verify-scheme 3
5.2. remove-complex-opera* 3
5.3. flatten-set! ...l 4
5.4. impose-calling-conventions 5)
5.5. expose-frame-variable 7
6. Boilerplate and Run-time Code 7
7. TeStingcocoovviiiiiiiii 8
8. Coding Hintsc.oooiiiiiiiin, 8

1. Background

Now that the compiler is capable of finding registers and frame locations for our local variables, we can turn
over to it the job of handling arguments and return values as well. This will relieve us from having to deal
directly with registers and frame variables explicitly in our test cases. We’'ll also generalize our language to
allow arbitrary nesting of expressions within procedure and primitive calls.

To handle arguments, the compiler rewrites the code so that the formal parameters are assigned to a specific
set of register and frame locations and, at call points, arranges to assign this same set to the argument values.
At return points, the compiler arranges to store the return value in a specific return-value register and to
jump (tail call) the return address stored in a specific return-address register. The specific register and
frame locations used for arguments, the return value, and the return address are determined by the calling
conventions, which also determine the set of registers preserved by a callee (the “callee save” registers) and
the set of registers that must be saved by the caller, if desired (the “caller-save” registers).

2. Calling Conventions

The standard x86_64 calling conventions are described in the System V Application Binary Interface AMD64
Architecture Processor Supplement, but since our procedures do not need to interact with procedures written
in other languages, we will use our own, simpler conventions:

e the first n (possibly zero) arguments are passed in the registers given by the helpers.ss variable
parameter-registers;

the remaining arguments are passed in frame locations £v0, fv1, etc., which map to consecutive words
based at the register given by the variable frame-pointer-register;

the return address is passed in the register given by the variable return-address-register;

the procedure’s value is returned in the register given by the variable return-value-register; and

all registers are caller-save.

(© 2009 R. Kent Dybvig, Andy Keep

The frame-pointer register might be considered callee-save because it must be pointing just above the caller’s
frame when the callee returns, just as it is pointing just above the caller’s frame at the point of call. Yet, it is
possible that the entire stack or portions of it are relocated during program execution, e.g., to support stack
resizing or continuation capture and invocation. So the actual address in the frame-pointer register may be
different even though its position relative to the base of the current frame is fixed. Thus, the frame pointer
is more properly considered an implicit return value from the callee, and if the original location really needs
to be preserved, the caller must do so.

The calling conventions are summarized by the following diagram.

unused portiol
of the stack
stack
grows
upward
Registers:
fp: frame pointer .
rv: return value v, arg n+3
P, argn fv, arg n+2 current frame
: vy arg n+1
. fp
p,: arg2
Pyt argl
older frames
ra: return address
Stack

3. Scheme Subset 6

The grammar for the subset of Scheme we’ll be handling this week adds formal and actual parameters and
does not permit explicit use of fixed register and frame locations. It also now allows the subexpressions of a
procedure call, primitive call, or assignment to be arbitrarily nested Value expressions.

Program — (letrec ([label (lambda (uwar*) Body)1*) Body)
Body — (locals (uwwvar*) Tuail)
Tail — Triw
| (binop Value Value)
| (Value Value*)
| (if Pred Tail Tail)
| (begin Effect* Tail)
Pred — (true)
| (false)
| (relop Value Value)
| (if Pred Pred Pred)
| (begin Effect* Pred)
— (nop)
| (set! wvar Value)
| (if Pred Effect Effect)
| (begin Effect* Effect)
Value — Triw
| (binop Value Value)
| (if Pred Value Value)
| (begin Effect* Value)
Triv — wwvar | int | label

Effect

Unique variables (uvar), labels (label), integers (int), binary operators (binop), and relational operators
(relop) are unchanged from the preceding subset. The machine constraints on integer values also remain
from the preceding subset.

4. Semantics

The subexpressions of a procedure or primitive call may be evaluated in any order, i.e., left-to-right, right-
to-left, or any other order, as long as the evaluation of any two arguments is not interleaved. Interleaving is
detectable only when effects are involved.

5. Things to do

To handle the new source language, we need to update verify-scheme; add three new passes:

e remove-complex-operax,
e flatten-set!, and

e impose-calling-conventions;

and make a slight modification to expose-frame-variable.

5.1. verify-scheme

This pass must be modified to account for the grammar changes.

5.2. remove-complex-operax

This pass removes nested primitive calls from within procedure calls and other primitive calls, making the
argument values “trivial.” Programs produced by this pass are in the language described by the grammar

below.

Program — (letrec ([label (lambda (uwar*) Body)1*) Body)
Body — (locals (uwwvar*) Tuail)
Tail — Triw

| (binop Triv Triv)

| (Triv Triv*)

| (if Pred Tail Tail)

| (begin Effect* Tail)
Pred — (true)

| (false)

| (relop Triv Triv)

| (if Pred Pred Pred)

| (begin Effect* Pred)
Effect — (nop)

| (set! wvar Value)

| (if Pred Effect Effect)

| (begin Effect* Effect)
Value — Trw

| (binop Triv Triv)

| (if Pred Value Value)

| (begin Effect* Value)
Triv — wwvar | int | label

The only change from the preceding grammar is that the subexpressions of primitive calls and procedure
calls are now Triv expressions rather than Value expressions.

In order to carry this out, each nontrivial Value must be assigned outside of the call to a fresh unique
variable. For example:

(f$1 (+ (* x.2 x.5) 7) (sra x.1 3))
becomes

(begin
(set! tmp.7 (* x.2 x.5))
(set! tmp.6 (+ tmp.7 7))
(set! tmp.8 (sra x.1 3))
(f$1 tmp.6 tmp.8))

The set of new unique variables introduced during this process must be added to the locals list enclosing
the body.

5.3. flatten-set!

This pass rewrites set! expressions as necessary to push them inside if and begin expressions so that, in the
output, the right-hand-side of each set! contains neither if nor begin expressions. We do this to convert
assignments into a form that more closely resembles assembly instructions. Programs produced by this pass
should be in the language described by the following grammar, which differs only in that the right-hand side
of a set! is (once again) restricted to a Triv or primitive call.

Program — (letrec ([label (lambda (uwar*) Body)1*) Body)
Body — (locals (uwwvar*) Tuail)
Tasl — Trw

(binop Triv Triv)

(Triv Triv*)

(if Pred Tail Tail)

(begin Effect* Tail)

|

|

|

|
Pred — (true)

| (false)

| (relop Triv Triv)

| (if Pred Pred Pred)

| (begin Effect* Pred)
Effect — (nop)

| (set! wvar Triv)

| (set! wvar (binop Triv Triv))

| (if Pred Effect Effect)

| (begin Effect* Effect)
Triv — wwvar | int | label

When the right-hand side of a set! expression is a begin expression, the set! should be pushed inside of
the begin with the last subexpression of the begin as its right-hand side.

(set! x (begin €1 ... ep—1 €,)) —
(begin e; ... e,—1 (set! z e,))

When the right-hand side is an if expression, the set! should be pushed inside the if and replicated so
that both the consequent and alternative of the if become right-hand sides of the assignment.

(set! z (if e e e€3)) —
(if e; (set! z ey) (set! z e3))

Of course, the new right-hand side in either case may be an if or begin expression, so it is necessary to
recur until the right-hand side is something other than an if or begin expression.

5.4. impose-calling-conventions

This pass imposes the calling conventions on the output code. It arranges for each argument to be passed in
a register or on the stack, as appropriate, and the return value to be returned in a register. After it is done,
lambda expressions no longer have explicit formal parameters, and both calls and returns are reduced to the
equivalent of jumps. The programs produced by this pass are in the same language as the input language
for uncover-frame-conflict. This language is described by the following grammar.

Program — (letrec ([label (lambda () Body)1*) Body)
Body — (locals (uwwvar*) Tuail)
Tail — (Triv Loc*)
| (if Pred Tail Tail)
| (begin Effect* Tail)
Pred — (true)
| (false)
| (relop Triv Triv)
| (if Pred Pred Pred)
| (begin Effect* Pred)
Effect — (nop)
| (set! Var Triv)
| (set! Var (binop Triv Triv))
| (if Pred Effect Effect)
| (begin FEffect* Effect)

Loc — reg | fvar
Var — wwar | Loc
Triv — Var | int | label

Our particular choice of calling conventions should not be hard-wired into the code for this pass. Instead,
the pass should assume only a fixed number (possibly zero) of parameter registers pg, p1, ..., Pn-1, @
frame-pointer register fp, a return-value register rv, and a return-address register ra. The actual regis-
ters to use are given by the new helpers.ss variables parameter-registers, frame-pointer-register,
return-value-register, and return-address-register.

This pass and the remainder of the compiler should be tested with different settings for these variables,
including more, fewer, and different parameter registers, a different return-value register, a different frame-
pointer register, and a different return-address register. It is also a good idea to test with the return-value
register being the same as one of the parameter registers. The pass should also be tested with just a few
registers overall, which can be done by setting the helpers.ss variable registers to a shorter list. We suggest
you don’t modify helpers.ss but instead assign these variables in your driver file while testing.

This pass makes three transformations to achieve its effect. First, it converts the formal parameters of each
lambda expression into locals and initializes these locals from the appropriate registers and frame locations.

(lambda (2p ... Tp—1 Tn -+ Zntm—1)
(locals (local ...)
body))
= (lambda ()
(locals (local ... ™ Xy ... Tp-1 Tn .. Tpnim—1)
(begin

(set! rp 10)
(set! 9 po)

(set! Tp_1 pp—1)
(set! =z, fuy)

(set! Znim—1 fom-1)
body)))
where rp is a fresh unique variable used to name the implicit return-address argument.
It assigns the register variables first to limit the live ranges of the ra and parameter registers.

For a letrec body, the transformation is a degenerate form of the transformation for lambda expressions,
since a letrec body has no formal parameters. It does, still, have an implicit return-address argument.

(locals (local ...) body) ;== (locals (local ...rp) ;== (begin ;== (set! rp ra) ;== body)))

A Body helper used to implement lambda bodies can be used for letrec bodies as well if it receives an
empty list of formal parameters for a letrec body.

Second, it assigns the appropriate registers and frame locations to the values of the actual parameters in
each call. It replaces the arguments in the syntax for each call with a set of locations assumed to be live at
the call, i.e., the return-address register ra, the frame-pointer register fp, and the set of locations into which
the arguments have been placed. The order of the locations in this set is irrelevant, since it declares only
the set of locations live at the point of the call.

(proc ey ... en—1 €y «v. €nik—1)
= (begin
(set! fuy ep)

(set! fup—1 entr—1)
(set! py ep)

(Set! Pn—1 en—l)
(set! ra mp)
(proc fp ra po ... Pn1 fuo --. fop_1))

Here, rp is the same unique variable chosen for the enclosing lambda expression.

We assign the parameter registers last to limit their live ranges.

Handling nontail calls requires a bit more work, but since our subset does not yet have nontail calls, we do
not have to worry about them yet.

Third and finally, this pass converts each Triv or primitive call tail into an explicit assignment to the return-
value register and a call to the return point. The return-value register is presumed live when the call is
made, so it is listed as live at the point of call. The return-address register should not be included, since the
last reference to it is in the call itself.

expr
= (begin
(set! rv expr)
(rp fp ™))

Here again, rp is the same unique variable chosen for the enclosing lambda expression.

If a Tail expression is an if expression or begin expression, this pass should recur until it finds a Tail
expression that is either a procedure call (in which case the second transformation above applies) or a Triv
or primitive call (in which cases the third transformation applies).

5.5. expose—frame-variable

This pass should be updated to determine the actual frame-pointer register from the new helpers.ss variable
frame-pointer-register. It should also use the helpers.ss align-shift variable to determine the amount
by which frame indices need to be shifted to convert them into byte indices, to avoid hard-wiring the word-size
into the compiler.

6. Boilerplate and Run-time Code

The boilerplate code does not change, but the frame-pointer, return-address, and return-value registers
should be determined via the helpers.ss variables frame-pointer-register, return-address-register,
and return-value-register. The helpers.ss procedure emit-program has been rewritten to do so.

The run-time code does not change.

7. Testing

A small set of invalid and valid tests for this assignment have been posted in tests6.ss. You should make
sure that your compiler passes work at least on this set of tests.

8. Coding Hints

Before starting, study the output of the online compiler for several examples.

Use make-begin in each of the three passes to avoid nested begin expressions.

