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Abstract 

This paper presents a procedural interface that han­

dles optional arguments and indefinite numbers of ar­

guments in a convenient and efficient manner with­

out resorting to storing the arguments in a language­

dependent data structure. This interface solves many 

of the problems inherent in the use of lists to store 

indefinite numbers of arguments. Simple recursion 

can be used to consume such arguments without the 

complexity problems caused by the use of the Lisp 

procedure apply on argument lists. An extension that 

supports multiple return values is also presented. 

1. Introduction

Many programming languages provide primitive prer 

cedures that are defined for variable numbers of ar­

guments. Typically, however, the programmer is 

not provided with a convenient way to create new 

variable-arity procedures. Although Common Lisp (6] 

and Scheme (5] both allow the programmer to define 

variable-arity procedures, the resulting definitions a.re 
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often unreadable or inefficient. Furthermore, the ar­

guments to procedures that accept an indefinite num­

ber of arguments are packaged in a list; this commit­

ment to a particular data structure reduces the gener­

ality of the mechanism and complicates the semantics 

of the procedural interface. 

There are two broad classes of variable-arity prer 

cedures: (1) procedures that accept an indefinite 

number of arguments, and (2) procedures that ac­

cept a limited but variable number of arguments. 

The second category can be further divided into two 

subclasses: (a) procedures that have optional argu­

ments with default values, and (b) procedures that 

perform related but distinct actions depending upon 

how many arguments they receive. In this paper 

we describe a procedural interface that handles each 

of these classes in a convenient and efficient man­

ner, without resorting to storing the arguments in a 

language-dependent data structure. We also describe 

a natural extension of this interface to handle multi­

ple return values. 

In his 1965 paper, Landin calls IswrM "an attempt 

to deliver Lisp from its eponymous commitment to 

lists" (3]. Although the concept of Lisp without lists 

seems paradoxical, most Lisp dialects provide alter­

native data structures and mechanisms for defining 

new data structures. It should be possible, ideally, 

to create a dialect of Lisp without lists. We feel that 

it is an important feature of our proposal, therefore, 

that the procedural interface does not depend on the 

list data structure. 

Some languages have gone to the extreme of ter 

tally immersing the procedural interface in the data 

structures of the language. For instance, Hewitt's 



.>t*-expression --+ (lambda* clause clause ... ) 

clause --+ [formals expression] 

formals --+ ( variable ... ) I ( variable . . . & rest-variable) 

procedure-call --+ ( expression expression ... ) I ( expression expression ... & rest-variable) 

expression --+ A* -expression I procedure-call I variable 

Figure 1. Syntax for x• 

PLASMA supports a mechanism superficially similar to 

ours, but defines all procedures to accept one argu­
ment. The argument may be an arbitrary list struc­
ture that the target procedure decomposes by pat­
tern matching [2]. However, a more general solu­
tion is to proceed in the opposite direction, to to­
tally divorce the fundamental control structures of 
a language from data structures and operations on 
those data structures. In clarifying the philosophy 

behind !SWIM Landin states, "Most programming 

languages are partly a way of expressing things in 

terms of other things and partly a basic set of given 
things ... [IswrM] is a byproduct of an attempt to dis­
entangle these two aspects. . . So it is not a language 
so much as a family of languages, of which each mem­
ber is the result of choosing a set of primitives." 

When a data structure becomes part of the pro­
cedural interface other problems arise due to the in­
teraction between �operations on the data structure 
and the interface. We shall see that the combination 
of varia.ble-arity procedures and lists in Lisp is not 
well designed, and can lead to apparently elegant pro­
grams with severe performance problems. Further­

more, the implementation of the variable-arity inter­
face is restricted, since the implementor is not always 
free to choose the most appropriate internal repre­

sentation. Divorcing the procedural interface from 
a concrete representation allows for significant opti­
mizations in common instances. 

We begin by describing the syntax and semantics 
of our new procedural interface, treating it as an ex­
tension to Scheme. We then devote a section to pro­
gramming examples; these examples demonstrate the 
new interface and show that it leads to elegant solu­

tions for common programming problems. We follow 

this with a discussion a.bout implementation problems 
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and strategies. We then describe how the syntax and 
semantics of the interface can be extended to allow 
multiple return values. In the final section we ma.ke 
some concluding remarks, compare our proposal with 
other approaches, and discuss possible extensions to 
the interface. 

2. Syntax and Semantics

Our procedural interface requires the introduction of 
a new syntactic form, .>t *, and extension of the appli­

cation syntax of Scheme. The grammar in Figure 1 
defines the syntactic rules for .>t * and the extended ap­
plication syntax. Although a complete semantics for 
Scheme with the extended procedural interface is be­
yond the scope of this paper, Figure 2 provides a for­
mal semantics for the subset expressed by the gram­
mar in Figure 1. The generalization to a semantics 
with continuations, stores, and the extended value 
domain necessitated by a full treatment of Scheme 
is straightforward. A description of the syntax and 
semantics of Scheme can be found in [5]. 

A .>t • expression with only one clause is compa­
rable to a Scheme A expression, and evaluates to a 
procedure. When such a procedure is applied, its for­

mals are bound to the actual parameters, and the 
corresponding expression is evaluated in the new en­
vironment. For example, (lambda* [(x) x]) defines 
the identity function. When more than one clause is 
present, the first clause whose formal parameters ac­
cept the actual parameters on a given call is applied. 
Each clause in a .>t * expression may be thought of as 
a separate procedure. A clause whose formals specifi­
cation is of the form ( x1 ... xn ) accepts only exactly n 

actual parameters. A clause whose formals specifica­
tion is of the form (x1 ... Xn & r) accepts any number 



Syntactic variables: 

Domains: 

e E expressions 

x E variables 
r E rest-variables 
f E formals 

v E values= values* -+ values 
e E values* 
p E environments= variables+ rest-variables-.. values* 

Semantic functions: 

E : expressions-.. environments-+ values 
M : formals -+ values* -+ booleans 
'R,: environments-.. formals-+ values* -+ environments 

Semantic equations: 

E[x)p=(px)!l 

E[(e e1 ... en)]P = strict(E[e]p)((E[ei]p), ... , (E[en]P)} 

E[(e e1 ... en &r)]p = strict(E[e]p)(((E[e1]P), ... , (E(en]P)}§(pr))
&[(lambda* {/1 e1) ... [fn en])]P =.Xe . M[/i]!-+ E(e1](Rp[Ji]e), 

error 

M[(x1 ... Xm )](v1, ... , Vn} = (m = n) 
M[(x1 ... xm &r)](v1, ... ,vn } =(m::; n) 

Rp[{x1 ... Xn)](v1, ... , Vn} = p[(v1}/x1] ... [(vn} /xn] 
Rp[{x1 ... Xn & r)](v1, ... , Vn , Vn+1, ... ) = p[(v1} /x1] ... [(vn} /xn][(vn+l, ... } /r) 

Figure 2. Semantics for .X * 

of actual parameters greater than or equal to n. All 
parameters in excess of n are bound to r; r is referred 
to as a rest variable, and the parameters bound to r 
are referred to as rest values. It is an error if no clause 
accepts the actual parameters, and the run time sys­
tem should trap the error and invoke an appropriate 
exception handler. 

The only way rest values can be accessed is by 
passing them to another procedure using the ex­

tended application syntax. A rest variable can refer 
to zero or more values. If r is a rest variable and refers 

to zero values, then an application (e1 e2 ... en & r) is 
equivalent to (e1 e2 ... en)- In general, if r refers to 
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values v1 ... Vm, then ( e1 e2 ... en & r) is equivalent to 
{e1 e2 ... en v1 ... vm )- Rest variables can appear only 
after an ampersand in the final position of a proce­

dure call, and only rest variables are permitted to 
appear after ampersands. 

Since access to the rest values is allowed only 
through procedure calls, we can guarantee that rest 
values are protected against side effects, and that they 
are passed by procedure calls without allocating new 
storage locations. We shall see that this latter fea­
ture is necessary to ensure that the apparent time 

and space complexity of an algorithm is not altered 
by the implementation of the procedural interface. 



3. Programming Examples

In this section we provide some simple programming 

examples to exhibit the power and elegance of the,\* 

construct. In the process we compare ,\* solutions 

with those possible in Scheme and Common Lisp. 

In Scheme, 1/0 procedures typically take an op­

tional port argument. The call (read-char) returns a 

character from the "current input port," while the 

call (read-char p) reads a character from the port p.

Without the ability to define variable-arity proce­

dures we would either have to provide two proce­

dures, say read-char and port-read-char, or force the 

programmer to always supply the port. Either alter­

native places a burden on the programmer, who must 

deal with extra procedure names or extra procedure 

arguments. Using ,\*, it is straightforward to provide 

procedures that accept optional arguments: 

( define read-char 

(lambda* 
[(p) (port-read-char p )] 

[ () (port-read-char (current-input-port))])) 

We can take advantage of optional arguments to 

combine the Scheme string-copy and substring pro­

cedures. The procedure call (string-copy s) returns 

a copy of the string s, and (substring s start end) 

returns a copy of the section of s from start to 

end. Assuming substring always returns a new string, 

string-copy is redundant, since (string-copy s) is the 

same as (substring s O (string-length s)). The only 

reason to have string-copy in the language is to allow 

the programmer to avoid providing the additional ar­

guments. By allowing substring to provide defaults for 

missing arguments (as in Common Lisp), string-copy 

can be omitted from the language: 

( define substring 

(lambda* 
[(s start end) ... code to build new string ... ] 

[(s start) (substring s start (length s))] 

[(s) (substring sO (length s))])) 

It is not necessary for substring to assume that the 

third argument is missing when only two arguments 
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are provided. We could just as easily define a ver­

sion of substring that supplies a default value for the 

second argument in that case: 

( define substring 

(lambda* 
[(s start end) ... code to build new string ... ] 

[(s end) (substring s O end)] 

[(s) (substring s O (length s) )] )) 

Alternatively, we can prevent confusion by requiring 

neither or both of the endpoints: 

( define substring 

(lambda* 
[(s start end) ... code to build new string ... ] 

[(s) (substring s O (length s))])) 

A procedure in which the first argument rather 

than the second argument can be considered optional 

is "-" defined as both a unary and binary procedure: 

(define 

(lambda* 
[(x y) (binary- x y)] 

[(x) (binary- 0 x)])) 

It is interesting to compare this with Scheme and 

Common Lisp versions of "-". In Scheme, a proce­

dure must take the optional argument or arguments 

in a list and destructure the list to obtain the argu­

ments: 

(define 
(lambda ( x . l) 

(cond 
[(null? l) (binary- 0 x )] 
[(null? (cdr l)) (binary- x (car/))] 

[else { error '- "too many arguments'')]))) 

Here the list destructuring and explicit error handling 

make the code difficult to follow and make gener­

ation of efficient code difficult. Although Common 

Lisp provides an optional argument mechanism that 

makes it unnecessary to package all optional argu­

ments in lists, it does have problems with "-" since 

the first argument is defaulted, and its mechanism is 

oriented toward defaulting trailing arguments. In or­

der to determine whether two arguments have been 

supplied, a supplied-predicate parameter as well as an 



initialization form must be provided, obscuring the 

intent and effect of the code: 

(defun - (x &optional (y O pred)) 

(if pred 

(binary- x y) 

(binary- y x))) 

We leave it as an exercise for the reader to convert 

the above versions of substring to Scheme and Com­

mon Lisp. Although Common Lisp handles the first 

version in a straightforward manner, solutions to the 

latter two that do full error checking are inelegant in 

both Scheme and Common Lisp. 

So far our examples have not dealt with proce­

dures that accept indefinitely many arguments. Con­

sider the following definition for "+": 

(define+ 

(lambda* 

[() O] 
[(x & r) (binary+ x (+ & r))])) 

Here we define ( +) to be zero, and let the zero­

argument clause be the base case. The second clause 

takes ca.re of additional arguments by setting up a 

simple recursion; since each call to "+" decreases the 

number of arguments by one, the base case must even­

tually be reached. 

It is not necessary that the base case be a zero­

argument clause. For "+", we can define a tail­

recursive version that uses a two-argument clause as 

the base case, while still supporting zero and one ar­

gument calls: 

(define+ 

(lambda* 

[() O] 
[(x) x] 

[(x y) (binary+ x y)] 

[(x y & r) ( + (binary+ x y) & r)])) 

The usefulness of rest values depends on an effi­

cient implementation. If the rest values are moved 

on each recursive call, an algorithm that appears to 

be linear with respect to the number of arguments is 

actually quadratic. The following Scheme definition 

for "+" illustrates this problem: 
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{define+ 

{lambda l 

(if (null? l) 

0 

(binary+ (car l) (apply + (cdr 1)))))). 

Again the list destruct uring interferes with clarity, 
but there is also a serious performance problem 

caused by the use of apply to recursively sum the list. 
The call-by-value semantics of Scheme demands that 
a fresh list be provided on each procedure call with 

a rest-list interface. This ensures that side effects to 

an existing list do not affect the arguments to a pro­

cedure. Although a compiler may be able to prove in 

simple cases that it is safe to use the same list across 
calls, an implementation cannot guarantee such be­

havior in general, and different implementations of 
the same language will vary widely in their handling 

of such optimizations. Consequently, an algorithm 
that appears to be linear with respect to the number 

of arguments is likely to be quadratic in many imple­

mentations. However, since algorithms like the one 
above are more elegant than those that contain inner 
recursions to explicitly reduce a list without the aid 
of apply, and since the copy ing problem is not likely 

to occur to most programmers, the end result is likely 

to be elegant programs with inexplicably poor perfor­
mance. 

The final example of this section uses A* to create 
a simple memory cell: 

( define cell 

(lambda (value) 

(lambda* 
[() value] 

[(new-value) (set! value new-value)]))) 

The definition of cell relies on the first-class status of 

procedures in Scheme. An invocation of cell returns a 

procedure with a private variable. When this proce­

dure is invoked with no arguments it returns the value 

of the private variable; when it is invoked with one 

argument it resets the variable to the new value. The 
curious aspect of this use of A* is that the new-value 

parameter does not have a default value. Instead, two 

different but related actions are performed depending 

upon the number of arguments. 



4. Implementation

The difficulty of and methods for implementing A" 

depend upon the characteristics of the language as a 

whole, especially its rules for the scope and extent of 

variable bindings. Certain features of Scheme make 

an efficient implementation difficult to achieve in gen­

eral. The indefinite extent of variable bindings and 

the lack of strong typing for procedures both nega­

tively impact efficiency. However, the A* construct 

can be made at least as efficient as the standard 

Scheme and Common Lisp interfaces. Furthermore, 

an implementation can detect many circumstances 

where more efficient strategies are possible. We can 

at least guarantee that (1) storage for rest values is 

allocated on the stack whenever the compiler can de­

tect that they have dynamic extent, (2) the expense 

of choosing among A* clauses is borne only by pro­

cedures with multiple clauses, and (3) the expense of 

handling rest values is borne only by procedures ex­

pecting to receive rest values. The expense of choos­

ing among A* clauses and of handling rest values is 

rarely significant, and whenever the compiler knows 

the interface of the called procedure at the point of 

call, as with calls to locally-defined procedures, these 

expenses are often avoided entirely. For traditional 

languages such as Pascal, where variables have dy­

namic extent and procedure interfaces are known, the 

more efficient strategies are always applicable. 

There are two constraints that all implemen­

tations must obey. The first is that rest values 

must be protected against side effects, since a rest 

variable may occur in more than one procedure 

call. For instance, we might have both (g & r) 

and (f & r) for some rest variable r. Suppose f is 

(lambda* [(x & s) e]), and e assigns x. This side 

effect cannot be allowed to affect the values g re­

ceives. This problem is easily solved by copying the 

values for non-rest variables into their own storage 

locations; this copying can be avoided for variables 

that are never modified. 

The second constraint is that procedure calls must 

not copy rest values unless there is no possibility that 
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the procedure call is either directly or indirectly re­

cursive. This constraint is more subtle since it is re­

lated to the complexity rather than to the correct­

ness of the computation. The discussion of "+" in 

Section 3 illustrates how unrestricted copying of rest 

values can turn an apparently linear algorithm into a 

quadratic one. 

A simple implementation can be derived directly 

from the semantics presented in F igure 2 by treat­

ing value sequences as heap-allocated linked lists. If 

the portion of the value list referenced by a rest vari­

able is not copied when passed on procedure call, and 

all assignable formal parameters are given fresh loca­

tions when a procedure is invoked, both of the above 

constraints are satisfied. Although such an imple­

mentation would be suitable for an interpreter, many 

modern implementations of Lisp-like languages use a 

stack for passing procedural parameters to save the 

expense of heap storage allocation and reclamation. 

Even in the presence of rest variables, a stack can still 

be used in many easily recognizable cases. Allocat­

ing the value list on the stack when the parameters 

do not have indefinite extent prevents the heap man­

agement overhead. Procedure calls can be further 

expedited by arranging parameters properly at the 

point of call, so that non-rest values are put directly 

in place on the stack. When it is known that the se­

quence of values associated with a rest variable has 

dynamic extent and is monotonically non-increasing 

in length across procedure calls, the sequence can be 

treated as a stack-allocated vector, resulting in fur­

ther savings of storage space and access time. 

The major challenge to an efficient implementa­

tion is handling calls to unknown procedures. The 

simplest solution is to force procedures that may 

be unknown to some caller to always accept heap­

allocated linked parameter lists. A better solution is 

to provide two entry points for such procedures, one 

for procedure calls that do not pass along a rest list 

and one for calls that do. Procedures that expect 

their parameters on the stack are provided with an 

extra entry point that calls a library routine to un­

fold a parameter list onto the stack. Procedures that 

expect their parameters in a linked list are provided 

with an extra entry point that calls a library routine 

to move parameters from the stack into a linked list. 



A* -expression --+ (lambda* clause clause ... ) 

clause --+ [formals body J 

formals --+ ( variable ... ) I ( variable . . . & variable) 

procedure-call --+ ( expression body) 

body --+ expression . . . I expression . . . & expression 

expression --+A* -expression I procedure-call I variable 

Figure 3. Syntax for A* with multiple return values 

This copying will be done at most once for a given 

parameter list if procedures that pass rest values to 

unknown procedures maintain the values as a linked 

list. 

5. Multiple Return Values

The section on multiple return values in Common 

LISP: The Language [6] begins, "Normally, multiple 

values are not used." Although this may be because 

multiple values are not often useful, a further reason 

might be that none of the ordinary Lisp constructs 

are easily adapted for receiving multiple values. For­

tunately, the x• interface adapts easily to multiple 

return values. Two capabilities are necessary: a ca­

pability for receiving multiple values and a capability 

for returning multiple values. For the receipt of mul­

tiple values we extend the syntax of procedure calls 

to allow an arbitrary expression evaluating to zero or 

more values to follow the ampersand. In Common 

Lisp a special primitive values is used to signal the 

return of multiple values. Although such a primitive 

could be adopted here, we think it more natural to 

extend A* expressions to allow them to directly return 

multiple values. We do this by allowing the body of 

a clause in a A* expression to consist of zero or more 

expressions; the values of all the expressions are re­

turned as the result of an invocation of the procedure. 

In addition, a clause body is permitted to contain an 

ampersand in the penultimate position; the expres­

sion following the ampersand may evaluate to zero or 

more values. The modified syntactic rules are shown 

in Figure 3. A formal semantics for the modified syn­

tax appears in Figure 4. 
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It is straightforward to simulate Common Lisp's 

values form, which is just the multiple value identity 
function: 

(define values (lambda* [(& r) & rl)) 

We can also define a simple procedure to force the re­

turn of the first value from an expression that returns 

one or more values: 

(define first (lambda* [(x & r) x])) 

So we can write, for instance, (p (first & e)), where p 

is an expression that evaluates to a procedure of one 

argument and e is an expression evaluating to one or 

more values. 

The effects of multiple return values are far reach­

ing, and important semantic issues must be resolved 

when they are added to a language. One such issue is 

what to do about expressions that do not evaluate to 
a single value in single-value contexts-in the above 

syntax, all expression contexts that do not immedi­

ately follow an ampersand. The approach adopted 

by Common Lisp is to ignore extra return values, as 

with first above, and to supply a default value when 

no value is returned. However, this approach hides 

rather than reports errors. Since it is easy to force 

the return of a single value when necessary, we pre­

fer to make unexpected or missing values an error. 

There are other contexts where single values are or­
dinarily required. In Scheme, conditional and assign­

ment statements are t.he other major contexts that 

must be considered. For conditional-,, it is reasonable 
to insist that the test expression evaluate to a single 

value, and let the context of the conditional determine 

the context of the branches. Little power is lost by 

restricting assignments to single-valued expressions. 



Syntactic variables: 

Domains: 

Semantic functions: 

e E expressions 

b E bodies 
x E variables 

f E formals 

v E values= values* -+ values* 
f E values* 
p E environments =variables-+ values* 

E : expressions -+ environments -+ values• 

M : formals -+ values* -+ booleans 

'R,: environments-+ formals-+ values" -+ environments 

X : bodies-+ values* 

Semantic equations: 

E[x]p = px 
Ei( e b )]p = strict( single(E[e]p ))X[b)p 

£[(lambda* [/1 b1] ... [fn bn])]P =A€. M[fi]f-+ X[b1 ]('Rp[/i]f), 

error 

X[e1 ... en ]P = (single(E[ei)p), ... , single(E[en]P)) 

X[e1 ... en & en+i]P = ( (single(E[e1]P), ... , single(E[en]P))) § (E[en+i]P) 

M[(x1 ... xm)](v1, ... , Vn} = (m = n) 
M[(x1 ... Xm & Xm+1)](v1, ... , vn) = (m � n) 

'Rp[(x1 ... xn )](v1, ... , Vn} = p[(v1)/xi] ... [(vn}/xn] 

'Rpl(x1 ... Xn & Xn+1 )](v1, ... , Vn , Vn+i, ... ) = p[(v1)/xi] ... [(vn)/xn][{Vn+i, ... )/xn+d 
single= A€.(#€= 1)-+ f ! 1, error 

Figure 4. Semantics for ).* with multiple return values 

However, since variables can refer to multiple values, 

it is reasonable to allow multi-valued assignments. 
Although adding multiple return values to a lan­

guage does complicate the implementation of the pro­

cedural interface, it is possible to place the burden 

of such complications on procedure calls expecting 

multiple values and on procedures returning multi­

ple values, without adversely affecting simpler pro­

cedure calls. Again avoiding repeated movement of 
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the multiple values is necessary to avoid introducing 

complexity problems, which means that heap storage 

becomes necessary in some cases even in a language in 

which variable bindings do not have indefinite extent. 

6. Conclusions

Scheme and Common Lisp provide procedural inter­

faces that make it possible to define variable-arity 



procedures. They are similar in that procedures ac­
cepting indefinitely many arguments receive these ar­
guments in a list. Both languages provide an apply 

function, which applies a function to the contents of a 
list, but using apply with lists is not considered equiv­
alent to using a rest variable in a procedure call. The 
problem is that list structures can be modified, so the 
only way to ensure that a procedure's arguments are 
safe is to provide it with a fresh list on each call or to 
prove that the existing list is never modified. Conse­
quently Scheme and Common Lisp cannot guarantee 
that the use of apply and lists of arguments will not 
result in complexity problems. This situation is anal­
ogous to Scheme's requirement that tail recursion be 
performed with no net growth of the control stack, so 
that iteration may be expressed as tail recursion. In 
both cases, it is not sufficient that a compiler can pro­
vide the optimization; in order for the feature to be 
generally useful, the compiler must provide the opti­
mization. Furthermore, just as optimal treatment of 
tail-recursion makes it unnecessary to include other 
primitive iterative control structures in a language, 
optimal treatment of the rest variable interface elim­
inates the need to include primitive data structures 
and procedures to access these data structures in the 
language. 

Common Lisp provides additional mechanisms to 
make defining procedures that take optional argu­
ments with default values more convenient. How­
ever, in cases for which there a.re no default values 
or for which an optional parameter appears before a 
required parameter, the Common Lisp optional in­
terface becomes clumsy. We find).* expressions both 
simpler and more elegant in many cases. 

Bellot and Jay provide a combinator-based se­
mantics for the equivalent of the lambda calculus ex­
tended to allow variable-arity functions [1). They sup­
port "rest" arguments by extending the syntax and 
semantics of the lambda calculus to handle variable­
arity functions directly. They also avoid commitment 
to a data structure for maintaining extra procedural 
arguments. They do not suggest the use of multiple 
clauses as a way to provide optional arguments and 
access to rest values, and they do not address the 
potential complexity problem caused by copying rest 
values. 
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It is tempting to view >. * as providing a limited 
sort of pattern matching and argument destructur­
ing, such as provided by ML [4]. However, ).* is in­
tended to provide a representation-independent way 
to manipulate indefinite numbers of arguments with­
out regard to the structure of the arguments them­
selves. In contrast, ML supports the definition of 
procedures with fixed numbers of arguments (via'cur­
rying), allowing pattern matching based on the struc­
ture of the arguments to be used in choosing among 
alternative procedure bodies. Our mechanism is or­
thogonal to the notion of pattern matching, though 

).* might provide a natural basis for an ML-like 
pattern-lambda that supports both variable-arity 
procedures and pattern-matching. 

The apparent utility of rest variables would be in­
creased by allowing ampersands and rest variables to 
appear anywhere in a formal parameter specification 
or procedure call. For example, we might wish to ex­
tend cons to accept an indefinite number of arguments 
(Common Lisp lish) with the following tail-recursive 
definition: 

( define cons 

(lambda* 

[(x) x] 

[(& r x y) (cons & r (binary-cons x y))))) 

In this definition, r refers to all the arguments ex­
cept for the last two, and it appears before rather 
than after the other argument in the recursive call 
to cons. Although this extended interface does make 
solutions to some programming problems simpler, ef­
ficiency problems inherent in the interface are not eas­
ily resolved. In particular, a straightforward general­
ization of the implementation techniques discussed in 
Section 4 would not allow us to make the same guar­
antees about the time and space complexity of pro­
cedures using the extended interface as we can make 
a.bout procedures using the more restricted interface.

We have chosen to emphasize varia.ble-arity pro­
cedures over multiple return values. One reason is 
that, although the capability for returning multiple 
values using ). * depends upon variable-arity proce­
dures, variable-arity procedures a.re independent of 
multiple return values. Consequently it is reasonable 



to support variable-arity procedures without support­

ing multiple return values. Furthermore, a program­

mer who does not wish to use aggregate structures to 

return multiple values can use continuation-passing­

style programming techniques to "return" multiple 

values in a language that allows procedures to be 

treated as first class objects. Since multiple return 

values have such far reaching effects on the syntax, se­

mantics, and implementation of a language, and since 

there are other means of achieving similar results, the 

question as to whether multiple return values should 

be directly supported by a language remains open. 
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