
Expansion-Passing Style: Beyond Conventional Macros

R. Kent Dybvig, Daniel P. Friedman, Christopher T. Haynes

Computer Science Department
Indiana University

Bloomington, Indiana 47405

Abstract

The traditional macro ·expansion facility inhibi.ts several
important forms of expansion control. These include se­
lective expansion of subexpressions, expansion of subex­
pressions using modified expansion functions, and expan­
sion of application and identifier forms. Furthermore, the
expansion algorithm must treat every special form as a
separate case. The result is limited expressive power and
poor modularity. We propose an alternate facility that
avoids these problems, using a technique called expansion­
passing st11le (EPS). The power of this technique is illus­
trated with several examples, including a set of debugging
tools. Most Lisp systems may be easily adapted to employ
this technique.

1. Introduction

Lisp systems generally include a facility that allows for
convenient extension of the source language syntax. This
facility is implemented by expanding s11ntaetie e:ttensions
(also called maeros) into the base language (special forms)
of the Lisp system. There are several advantages to
source-level expansion over the use of a special interpreter
to provide new syntatic forms. First, it eliminates the

need for extra layers of interpretation; source-code ex­
pansion need only be performed once, resulting in greater
efficiency. Second, it is easier to make modifications with
syntactic extensions than by writing new interpreters.
Third, the semantics of a language obtained by "sugar­
ing" the syntax of an existing welJ understood language
with syntactic transformations is more easily understood
and verified than the semantics of a language obtained by
writing a new interpreter. Finally, the extended language
is easily ported to another host that supports the same

· base language.

This material is based on work supported by the
National Science Foundation under grant numbers
DCR 85-01277 and DCR 83-03325.

To appear in the 1986 ACM Symposium on LISP and
Functional Programming .

In the next section we review the conventional syntac­
tic extension facility. We then present examples of several
forms of syntactic extension that are not possible using
the traditional mechanism. In the following section we in­
troduce a facility with the flexibility to implement these
extensions. Most Lisp systems may be easily adapted to
employ this facility. As a substantial and practical exam­
ple of the new facility's power, we then present debugging
tools that are easily obtained using syntactic extension.
Finally, we note a few problems with this facility that
merit further investigation. The code that follows is ex­
pressed in Scheme (2,3).

2. Background and Motivation

Syntactic transformations of Lisp programs are most con­
ven.iently and efficiently performed by manipulating ex­
pressions prior to evaluation. Provision for this is eas­
ily made by adding a preprocessor to eval, which we call
expand. Such decoupling of the evaluation mechanism
from the syntactic extension mechanism has the advan­
tage of simplifying the underlying compiler or interpreter
and making the syntactic transformations independent of
the implementation.

Syntactic extension is performed by invoking expan­
sion functions when certain keywords are present in the
car position of a form (expression). Such keywords are as­
sociated with expansion functions in some manner, such
as a •MACRO• property. Traditionally, when the expand
function encounters a form with a macro keyword in its
car position, the entire form is passed to the associated
expansion function. The expansion function then returns
a new form, obtained by transforming the old one, that is
then expanded in place of the old form. See Figure 1 for a
typical expand function using this protocol. Each special
form (there are 24 in Common Lisp (6]) must in general
be treated as a special case.

Consider the expansion of let expreMions of the form

(let ((id1 exp1) ... (idn expn))
body1 . . . bodym)

into the equivalent lambda applications of the form

((lambda (id1 ... idn) body1 ... bodym)
exp1 . . . exp,.).

1

(define old-style-expand
(lambda (x)

(cond
((symbol? x) x)
((not (pair? x)) x)
((macro? (car x))
(old-style-expand ((get (car x) '•MACRO•) x)))

((eq? (car x) 'lambda)
'(lambda ,(cadr x)

,C(map old-style-expand (cddr x))))
((eq? (car x) 'quote) x)

other special /orm8

(else (map old-style-expand x)))))

(define macro?
(lambda (x)

(and (symbol? x) (get x '•MACRO•))))

Figure 1. Traditional syntactic expansion mechanism.

Using put, we define this expansion as follows:

(put 'let '•MACRO•
(lambda (x)

'((lambda .(map car (cadr x)) ,C(cddr x))
. C(map cadr (cadr x}})}).

Though this mechanism provides c�nsiderable power
at low cost, it has several problems. In the first place, it
does not permit the expansion of application and iden­
tifier forms, which may be useful. For example, we may
wish to obtain curried or call-by-name semantics by syn­
tactic transformation of an uncurried call-by-value lan­
guage. Currying requires that applications and abstrac­
tions with more than one argument be transformed into
nested applications and abstractions of one argument;
thus (f a b) would become ((f a) b) and (lambda (a b)
...) would become (lambda (a) (lambda (b) ...)) . To
obtain call-by-name semantics, it suffices to

• replace every application argument e that is not an
identifier by (box (lambda () e')), where e' is ob­
tained by expanding e,

• replace every identifier reference id that is not an ar­
gument by ((unbox id)), and

• replace every assignment statement of the form (set!
id e), where e is not an identifier, by

(set-box! id (let ((x e')) (lambda O x)}).

The functions box, unbox, and set-box! create, derefer­
ence, and change one-celled objects. Call-by-need may be
achieved with a more complex application expansion.

In the second place, the re-expansion of forms re­
turned by expansion functions is usually, but not always,
desirable. Sometimes it is important that either the new
top level expression or some of its subexpressions not be
expanded further, or that a different expansion function
be applied to these expressions. A case in point is the
above call-by-name expansion, in which it is not appro-

priate to perform the expansion on the application in­
troduced by expanding an identifier reference, or on the
lambda expression introduced by transforming an assign­
ment expression. In other cases, such as some of the de­
bugging tools to be presented later, it is important that an
expansion be performed only on selected subexpressions.

Finally, consider the problem of defining a syntactic
extension that allows the definition of new syntactic ex­
tensions that are only effective within its lexical scope, in
the manner of macrolet [6]. This requires that the body
be expanded with an augmented expander obtained by
extending the current expander so that it recognizes the
new form.

3. Expansion-Passing Style

In the last section we demonstrated that expanders should
have control over the further expansion of the forms they
return. This is analogous to the need for a function to
have control over how the value that it returns is used
to continue the computation. Continuation-passing style
(CPS) may be used to give the function this power [4,5,7].

In the macro? line of old-style-expand (Figure I), the
recursive call occurs in tail recursive position. Thus if
old-style-expand were written in CPS, the macro expan­
sion function could simply be passed old-style-expand
as its continuation argument and the value returned by
the expansion function would require no further expan­
sion. This motivates us to modify the traditional macro
protocol:

Expansion functions take two arguments, tbe expres­

sion to be expanded and an expansion function tha.t

must be applied to any form tbat is to be further ex­

panded.

We call such expansion functions expanders and refer to
this protocol as expansion-passing style (EPS).

EPS gives expanders control over whether the entire
transformed expression is to be expanded further, which
proper subexpressions are to be expanded, when the ex­
pansions are to be done, and even what expander is to be
used for further expansion. In most cases the expander
that is passed will be used, but other alternatives are pos­
sible.

It is a simple matter to transform a macro expan­
sion function obeying the traditional protocol into an ex­
pander.

(define macro-to-expander
(lambda (m)

(lambda (x e) (e (m x) e))))

(Where no ambiguity results, we use the identifiers x and
e for form and expander arguments, respectively.)

The system expand function is now defi�ed in terms
of an initial expander that dispatches on the type of form
to be expanded. We also define expand-once, which does
only one level of expansion, and is useful for debugging
expanders. See Figure 2. Neither expand nor initial -
expander is directly recursive.

2

..

(define expand
(lamlxia (x)

(initial-expander x initial-expander)))

(define initial-expander
(lambda (x e)

(let ((el (cond
((symbol? x) •identifier-expander•)
((not (pair? x)) (lambda (x e) x))
((expander? (car x))
(get (car x) '•EXPANDER•))

(else •application-expander•))))
(e1 x e))))

(define expand-once
(lambda (x)

(initial-expander x (lambda (x e) x))))

(define •identifier-expander• (lambda (x e) x))

(define •application-expander•
(lambda (x e)

(map (lambda (x) (e x e)) x)))

(define install-expander
(lambda (keyword function)

(put keyword '•EXPANDER• function)))

(define expander?
(lambda (x)

(and (symbol? x) (get x '•EXPANDER•))))

Figure e. Basic EPS functions.

It is no longer necessary to include each of the special
forms, such as lambda and quote, in the system expand
function. It is only necessary to associate expanders with
the special form keywords in the same way that new syn­
tactic extensions are defined. With the traditional macro
mechanism this is impossible, since it is essential that (1)
some sub-parts not be expanded (for example, the formal
parameter list of laobda or the literal part of quote), and
(2) the entire form not be re-expanded (as the expansion
process would not terminate). But expanders can control
further expansion:

(install-expander 'lambda
(lambda (x e)

'(lambda .(cadr x)
.�(map (lambda (x) Ce x e)) (cddr x)))))

(install-expander 'quote (lambda (x e) x)) .

Factoring the special forms out of the expander incre ases
modularity, encourages custom variations on the ex­
pander, and allows redefinition of special form expanders.

Figure 3 illustrates the use of install-expander to
implement a conventional macro definition interface. The
essential features of defmacro [6] are supported. (Most of
the code is dedicated to destructuring the arguments to
the macro.)

(install-expander 'defmacro
(lambda (x e)

(let ((keyword (cadr x))
(pattern (caddr x))
(body (cadddr x)))

(e '(install-expander ',keyword
(make-macro ',pattern ',body))

e))))

(define make-macro
(lambda (pat body)

(eval
• (lambda (x e)

(e (let .(destructure pat '(cdr x) '())
,body)

e)))))

(define destructure
(lambda (pat arg bindings)

(cond
((null? pat) bindings)
((symbol? pat) (cons '(,pat ,arg) bindings))
((pair? pat)
(destructure (car pat) '(car ,arg)

(destructure (cdr pat) '(cdr ,arg)
bindings))))))

Figure S. defmacro expander.

Currying of applications and lambda abstractions is
now straightforward; see Figure 4. We might expect the
second cond clause in the redefinition of •application­
expander• to be

((null? (cddr x)) Ce '(,(car x) ,(cadr x)) e)).

However, this would loop indefinitely. Invoking e on a
two element application will cause the same clause to ·be
reentered.

The call-by-name transformations outlined in the last
section may now be obtained by changing the meaning
of application, identifier and set! forms; see Figure 5.
If let were used in the expansion of set!, the let form
would have to be further expanded (assuming let is im­
plemented as a syntactic extension); but this expansion
would result in the by-name application transformation
being applied to the application resulting from the let
expansion, which would be an error. Thus when writing
the set! expansion it is necessary to manually expand
the let. Sometimes great care is required when writing
expanders!

The factorial function may be defined in a way that
dramatizes the normal order evaluation semantics:

(define Y

(lambda (f)
((lambda (x) (f (xx)))

(lambda (x) (f (x x))))))

3

(define factorial
(Y (lambda (1)

(lambda (x)
(let ((a (name-zero? x))

(b (name-• x Cf (name-sub1 x)))))
(if a 1 b))))))

where name-zero?, name-• and name-sub1 are versions of
the zero?, • and sub1 primitives that force evaluation of
their arguments. This only works because the let form
expands into an application that is then transformed. to
delay evaluation of the let bindings.

(set! •application-expander•
(lambda (x e)

(cond
((null? (cdr x)) '(,(e (car x) e)))
((null? (cddr x))

'(,(e (car x) e) ,Ce (cadr x) e)))
(else

(e '((,(car x) ,(cadr x)) ,C(cddr x)) e)))))

(install-expander 'lambda
(lambda (x e)

(let ((args (cadr x)) (body (cddr x)))
(cond

((null? args)
'(lambda ()

,G(map (lambda (x) (e x e)) body)))
((null? (cdr args))

'(lambda ,args
,C(map (lambda (x) (e x e)) body)))

(else
'(lambda (,(car args))

.Ce '(lambda ,(cdr args) ,Cbody)
e)))))))

Figure�- Currying expanders.

(define delay
(lambda (x e)

'(box (lambda () ,(e x e)))))

(set! •application-expander•
(lambda (x e)

'(. (e (car x) e)
,C(map (lambda (x)

(if (symbol? x) x (delay x e)))
(cdr x)))))

(set! •identifier-expander•
(lambda (x e)

'((unbox ,x))))

(install-expander 'set!
(lambda (x e)

'(set-box! ,(cadr x)
((lambda (v) (lambda () v))

.Ce (caddr x) e)))))

Figure 5. Call-by-name expanders.

{define delay
(let ((g (gensym)))

(lambda (x e)
• ((lambda (,g)

(set-box! ,g
(lambda 0

((lambda {v)
(set-box! ,g (lambda () v))
v)

.Ce x e))))
.g)

(box '•)))))

Figure 6. delay for call-by-need.

(define extend-expander
(lambda (current-expander keyword keyword-expander)

(lambda (x e)
{if {and {pair? x) (eq? {car x) keyword))

(keyword-expander x e)
{current-expander x e)))))

(install-expander 'macrolet
(lambda (x e)

(recur loop ((macs (cadr x)) (e e))
(if (null? macs)

(e (caddr x) e)
(let ((key (caar macs))

(pat (cadar macs))
(body (caddar macs)))

(loop (cdr macs)
(extend-expander e key

(make-macro pat body))))))))

Figure 7. extend-expander and macrolet.

We may similarly obtain call-by-need semantics, in
which argument evaluation is delayed as long as possible
and performed only once; see Figure 6. Here, if the thunk
made from the argument expression is ever invoked, it
evaluates the expression, changes its box to hold a new
thunk, and returns the value. The new thunk merely
returns the value directly.

Next we define extend-expander, a function that pro­
vides a convenient means of extending an expander so
that it recognizes a new syntactic extension with which a
keyword and expander are associated; see Figure 7. This
extension technique is analogous to that used in deno­
tational semantics to extend environments. A practical
use of extend-expander (shown in Figure 7) is to define
an expander for macrolet, which temporarily establishes
keyword bindings that are visible only within its body, for
example:

(macrolet ((foo (x y) '(list .x .y))
(bar ((a) . b) '(list ,a ,b)))

(append (foo 1 2) (bar {3) . 4)))

returns (1 2 3 4).

4

4. Debugging with syntactic extensions

As a final example of our expansion mechanism's power,
we illustrate an approach to the construction of a vari­
ety of debugging tools, including tracers, steppers, and
inspectors. These tools are obtained using only function
definition and the syntactic extension mechanism intro­
duced here. This has a number of advantages over other
approaches to implementing debugging tools:

• it is portable to implementations of the same lan­
guage that support this style of syntactic extension,
since it is not dependent on the run time architecture;

• it is independent of the method of implementation
(compilation or interpretation);

• its correctness is easily verified, since it is simple and
is defined in terms of the existing evaluation mecha­
nism;

• its simplicity encourages experimentation and cus­
tomization to meet specific needs; and

• the regions of text in which it is effective are easily
controlled and there is no efficiency penalty for code
outside of these regions.
We begin with a simple trace facility that prints each

application before its evaluation and its result after eval­
uation, with indentation provided to keep track of the
applications in the process of evaluation. This is accom­
plished by redefining the application expander so that
applications of the form (x1 • • . xn> are expanded into
expressions of the form

(trace-form '(x1 Xn)
(lambda () (� . . . x�)))

where each :< is obtained by similarly expanding x;. See
Figure 8. This provides, with remarkable economy, a fre­
quently useful trace facility.

The following trace illustrates two problems with this
approach.

> (let ((x '(a b))) (car (cdr x)))

((lambda (x) (car
I
I
I
I

b

b

(car (cdr x))
I (cdr x)
I (b)
b

(cdr x))) (quote (a b)))

We would usually like forms other than applications, such
as let and quote, to be traced. Also, we usually do not
want to see forms that are not in our souce code, but
were instead introduced by syntactic extensions, such as
the lambda application introduced by the let expression
above. Finally, we may wish to trace only a small part of
a large program, in order to reduce the volume of trace
output and improve efficiency.

(set! •application-expander•
(lambda (x e)

'(trace-form '.x
(lambda () .(map (lambda (x) (e x e)) x))}))

(define trace-form
(let ((level O))

(lambda (source thunk}
(do-times (n level} (display "I "))
(printf "·s-X" source)
(let ((result

(fluid-let ((level (add1 level}})
(thunk))))

(do-times (n level) (display "I "))
(printf n·s·xn result)
result))))

Figure 8. Application tracer.

These considerations motivate the trace-source syn­
tactic extension that traces all, and only, fol'Jilll occurring
in the source code of its body. For example,

> (collB 'c
(trace-source

(let ((x '(a b))) (car (cdr x)})))

(let ((x (quote (a b)})) (car (cdr x}))
(quote (a b))

b

(a b)
(car (cdr x}}
I (cdr x)
I (b)

b

(c . b}

See Figure 9 for the implementation of trace-source .

(install-expander 'trace-source
(lambda (x e)

(let ((e1 (trace-expander (cadr x) e)))
(e1 (cadr x) e1)}}}

(define trace-expander
(lambda (source e)

(lambda (x e1)
(if (and (pair? x} (subexpression? x source)}

'(trace-form ',x (lambda () • (e x e1)})
(e x e1)))))

(define subexpression?
(lambda (x a)

(or (eq? x s)
(and (pair? s)

(or (subexpression? x (car s))
(subexpression? x (cdr s)))))))

Figure 9. Source code trace facility.

5

Note especially the two occurrences of (e x el) in trace­
expander. If (el x el) were used instead, infinite expan­
sion would result, for trace-expander would be feeding
on its own output. {It is extra.ordinarily easy to create
infinite expansion-time loops using expanders!) Using e
for the next level of expansion avoids this recursion, but
it would not do to use (e x e): in order for subforms to
be traced, it is necessary for the expanders at the next
level to expand their subforms with the trace expander,
el. Also note that the trace expander carries the original
source code with it. The full power of EPS is realized
only when expanders are closures with local state.

By modifying trace-form, we can turn our tracer into
a stepper; see Figure 10. step• causes the current expres­
sion to be evaluated without further stepping. This is
achieved by fluidly (or dynamically) rebinding trace-form
to a function that invokes the thunk it is passed. (The
original binding of trace-form is automatically restored
by fluid-let when the value of the current expression,
ans, is returned.)

Next we endow our trace facility with the powers of
an inspector: the ability to examine and change the values
of lexical variable bindings. In order that trace-form have
access to the run time environment, we replace every ex­
pression of the form (lambda (id1 ... idn) body1 ... bodym)
within the scope of trace-source with one of the form

(lambda (id1 . . . idn)
{trace-lambda-body

• (id, . . . id,.)
(list locative 1 • • • locative,.)

(lambda () body� . . . body!,,)))

where body; is obtained by expanding body,, and the loca­
tives give trace-lambda-body access to the bindings of the
formal parameters. See Figure 11. The locative for iden­
tifier id is represented as a functional object that responds
to the get and put messages by returning the ·current
value of id and a function that assigns a given value to
id, respectively. trace-lambda-body fluidly assigns to the
trace environment a list of identifier-locative pairs cor­
responding to the lambda expression's arguments. The
trace-form commands see and set! may then be used to
inspect and modify the environment bindings of the local
contour.

By redefining trace-lambda-expander it is possible to
inspect all visible environment bindings; see Figure 12.
•all-vars• is fluidly bound, at expansioll time, so that it
lists all visible identifiers in the current lexical environ­
ment. This list is then used in place of the lambda formals
list when constructing •trace-env•.

Common Lisp provides a special form, compiler-let,
to give the programmer limited control over the state
in which macro expansion occurs. AB this last version
of trace-lambda-expander demonstrates, the use of fluid
variables provides this control without the need for addi­
tional machinery.

This technique of implementing a debugger is compa­
rable in run time efficiency to other debuggers, and pro-

(define trace-form
(lambda (source thunk)

(recur loop ()
(printf "-s: " source)
(case (read)

(step
(let ((ans (thunk)))

(pri.ntf 11
-s returns -s-X" source ans)

ans))
(step•
(fluid-let ((trace-form (lambda (s f) (f))))

(let ((ans (thunk)))

(else

(printf rs returns -s-X" source ans)
ans)))

(printf "options: step, step•")
(loop))))))

Figure 10. trace-form for a stepper.

vides all the advantages mentioned at the beginning of
this section. But it does have one drawback: it generates
voluminous code. In some cases this would be a serious
problem. In other situations, where the region in which
debugging is enabled is of moderate size, the advantages
of this approach to debugging more than compensate for
the increase in code size.

5. Conclusion
We have proposed a syntactic extension technique, called
expansion-passing style {EPS), that !s significantly more
flexible than the traditional mechanism. It allows se­
lective expansion of subexpressions, expansion of subex­
pressions using modified expansion functions or modified
state, and expansion of application and identifier forms.
It also simplifies the expansion algorithm and improves
modularity by factoring out special forms. EPS may be
easily incorporated into most Lisp systems without the
need for system level programming.

Though EPS is a substantial improvement over
the traditional approach to syntactic extension, it does
present a few difficulties. We have already shown in­
stances in which programming with expanders is error
prone: it is easy to perform unwanted, or even infinite, ex­
pansions. Our defense is that (1) powerful tools frequently
require great care in their use, and (2) if the power of this
mechanism is not required, there need be no danger in
its use. (We have shown that traditional macro expan-

. sion facilities, such as defmacro, can be provided in the
more general EPS context.) Another problem is that we
have found it necessary to bind •application-expander•
and •identifier-expander• in a different manner than
other expanders. Thus install-expander and 1Dacrolet
cannot be used to redefine the application and identifier
expanders. The root of this problem is that an expander
cannot tell until all code has been expanded whether a
given form is an application or not. This in turn results
directly from the overloading of symbols to denote both
identifiers and keywords in traditional Lisp syntax.

6

(install-expander 'trace-source

(lambda (x e)
(let ((el (extend-expander e 'lambda

trace-lambda-expander)))

(let ((e2 (trace-expander (cadr x) el)))

(e2 (cadr x) e2)))))

(define trace-lambda-expander

(lambda (x e)

'(lambda ,(cadr x)

(trace-lambda-body

',(cadr x)

(list ,C(map locative (cadr x)))

(lambda ()

,C(map (lambda (x) (e x e)) (cddr x)))))))

(define locative

(let ((msg (gensym)) (x (gensym)))

(lambda (id)

' (lambda (. msg)

(if (eq? ,msg 'get)

.id

(lambda (.x) (set! ,id .x)))))))

(define •trace-env• '())

(define trace-lambda-body

(lambda (vars vals body)
(fluid-let ((•trace-env• (map cons vars vals)))

(body))))

(define trace-form

(lambda (source thunk)

(recur loop 0

. (printf "-s: " source)

(case (read)

(step

(let ((ans (thunk)))

(printf "-s returns -s-X" source ans)

ans))

(step•

(fluid-let ((trace-form

(lambda (s f) (f))))

(let ((ans (thunk)))

(see

(printf n-s returns -s·x0 source ans)

ans)))

(for-each

(lambda (x)

(printf n·s = -s-x"

(car x)

((cdr x) 'get)))

•trace-env•)

(loop})

(set!

(let• ((id (read))

(val (read))

(pair (assq id •trace-env•)))

(if pair

(begin
(((cdr pair) 'put) val)

(printf n·s : -s-x" id val)}

(printf "id ·s not found-X" id)))

(loop))

(else

(printf "options: step. step•. see. set!")

(loop))))))

Figure 11. A stepping inspector.

The critical difference between the facility proposed
here and the traditional macro mechanism is that expan­
sion functions are passed not only an expression to be ex­
panded, but also another expansion function. This func­
tion may or may not be used to perform further expan­
sion. This is analogous to passing an explicit continua­
tion to a procedure, which is well known to be a powerful
programming technique (for example, see [1,7)). In this
paper we have demonstrated that the closely related tech­
nique of passing expanders explicitly provides a powerful
tool for defining syntactic extensions.

Acknowledgment: This material is based in part on work
supported by the National Science Foundation under
grant numbers MCS 83-04567 and MCS 83-03325.

(define •all-vars• '())

(define trace-lambda-expander

(lambda (x e)

(fluid-let ((•all-vars•

(union (cadr x) •all-vars+)))

'(lambda ,(cadr x}

(trace-lambda-body

',•all-vars•

(list ,C(map locative •all-vars•))

(lambda 0

,C(map (lambda (x) Ce x e))

(cddr x))})})))

Figure 11!. A visible environment inspector.

7

References

[l] Charniak, E., Riesbeck, C.K., and McDermott, D.V.,
Artificial Intelligence Programming, Lawrence Erlbaum
Associates, 1980.

(2] Clinger, W.C., Ed., The Revised Revised Report
on Scheme, Computer Science Department Technical
Report No. 174, Indiana University, Bloomington, In­
diana, 1985, and Artificial Intelligence Memo No. 848,
MIT, Cambridge, Massachusetts, 1985.

(3) Dybvig, R.K., and Smith, B.T .. , Tbe Scheme Program­
ming Language, Prentice-Hall, 1986, in press.

(4] Fischer, M.J., Lambda calculus schemata, Proceedings

ACM Conference on Proving Assertions about Programs,
Las Cruces, New Mexico, pp. 104-109, 1972.

[5] Plotkin, G., Call-by-name, call-by-value, and the)..
calculus, Theoretical Computer Science, 1, pp. 125-159,
1975.

[6] Steele, G.L., Common LISP: The Language, Digital
Press, 1984.

[7] Steele, G.L., LAMBDA: the ultimate declarative, Ar­
tificial Intelligence Memo No. 379, MIT, Cambridge,
Massachusetts, 1976.

8

