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Abstract 

The traditional macro ·expansion facility inhibi.ts several 
important forms of expansion control. These include se­
lective expansion of subexpressions, expansion of subex­
pressions using modified expansion functions, and expan­
sion of application and identifier forms. Furthermore, the 
expansion algorithm must treat every special form as a 
separate case. The result is limited expressive power and 
poor modularity. We propose an alternate facility that 
avoids these problems, using a technique called expansion­
passing st11le (EPS). The power of this technique is illus­
trated with several examples, including a set of debugging 
tools. Most Lisp systems may be easily adapted to employ 
this technique. 

1. Introduction

Lisp systems generally include a facility that allows for 
convenient extension of the source language syntax. This 
facility is implemented by expanding s11ntaetie e:ttensions 
( also called maeros) into the base language ( special forms) 
of the Lisp system. There are several advantages to 
source-level expansion over the use of a special interpreter 
to provide new syntatic forms. First, it eliminates the 

need for extra layers of interpretation; source-code ex­
pansion need only be performed once, resulting in greater 
efficiency. Second, it is easier to make modifications with 
syntactic extensions than by writing new interpreters. 
Third, the semantics of a language obtained by "sugar­
ing" the syntax of an existing welJ understood language 
with syntactic transformations is more easily understood 
and verified than the semantics of a language obtained by 
writing a new interpreter. Finally, the extended language 
is easily ported to another host that supports the same 

· base language.

This material is based on work supported by the 
National Science Foundation under grant numbers 
DCR 85-01277 and DCR 83-03325.

To appear in the 1986 ACM Symposium on LISP and 
Functional Programming . 

In the next section we review the conventional syntac­
tic extension facility. We then present examples of several 
forms of syntactic extension that are not possible using 
the traditional mechanism. In the following section we in­
troduce a facility with the flexibility to implement these 
extensions. Most Lisp systems may be easily adapted to 
employ this facility. As a substantial and practical exam­
ple of the new facility's power, we then present debugging 
tools that are easily obtained using syntactic extension. 
Finally, we note a few problems with this facility that 
merit further investigation. The code that follows is ex­
pressed in Scheme (2,3). 

2. Background and Motivation

Syntactic transformations of Lisp programs are most con­
ven.iently and efficiently performed by manipulating ex­
pressions prior to evaluation. Provision for this is eas­
ily made by adding a preprocessor to eval, which we call 
expand. Such decoupling of the evaluation mechanism 
from the syntactic extension mechanism has the advan­
tage of simplifying the underlying compiler or interpreter 
and making the syntactic transformations independent of 
the implementation. 

Syntactic extension is performed by invoking expan­
sion functions when certain keywords are present in the 
car position of a form (expression). Such keywords are as­
sociated with expansion functions in some manner, such 
as a •MACRO• property. Traditionally, when the expand 
function encounters a form with a macro keyword in its 
car position, the entire form is passed to the associated 
expansion function. The expansion function then returns 
a new form, obtained by transforming the old one, that is 
then expanded in place of the old form. See Figure 1 for a 
typical expand function using this protocol. Each special 
form ( there are 24 in Common Lisp (6]) must in general 
be treated as a special case. 

Consider the expansion of let expreMions of the form 

(let ((id1 exp1) ... (idn expn)) 
body1 . . . bodym) 

into the equivalent lambda applications of the form 

((lambda (id1 ... idn) body1 ... bodym) 
exp1 . . . exp,. ). 
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(define old-style-expand 
(lambda (x) 

(cond 
((symbol? x) x) 
((not (pair? x)) x) 
((macro? (car x)) 
(old-style-expand ((get (car x) '•MACRO•) x))) 

((eq? (car x) 'lambda) 
'(lambda ,(cadr x) 

,C(map old-style-expand (cddr x)))) 
((eq? (car x) 'quote) x) 

other special /orm8 

(else (map old-style-expand x))))) 

(define macro? 
(lambda (x) 

(and (symbol? x) (get x '•MACRO•)))) 

Figure 1. Traditional syntactic expansion mechanism. 

Using put, we define this expansion as follows: 

(put 'let '•MACRO• 
(lambda (x) 

'((lambda .(map car (cadr x)) ,C(cddr x)) 
. C(map cadr (cadr x}})}). 

Though this mechanism provides c�nsiderable power 
at low cost, it has several problems. In the first place, it 
does not permit the expansion of application and iden­
tifier forms, which may be useful. For example, we may 
wish to obtain curried or call-by-name semantics by syn­
tactic transformation of an uncurried call-by-value lan­
guage. Currying requires that applications and abstrac­
tions with more than one argument be transformed into 
nested applications and abstractions of one argument; 
thus (f a b) would become ((f a) b) and (lambda (a b) 
... ) would become (lambda (a) (lambda (b) ... ) ) . To 
obtain call-by-name semantics, it suffices to 

• replace every application argument e that is not an
identifier by (box (lambda () e')), where e' is ob­
tained by expanding e,

• replace every identifier reference id that is not an ar­
gument by ((unbox id)), and

• replace every assignment statement of the form (set!
id e), where e is not an identifier, by

(set-box! id (let ((x e')) (lambda O x)}). 

The functions box, unbox, and set-box! create, derefer­
ence, and change one-celled objects. Call-by-need may be 
achieved with a more complex application expansion. 

In the second place, the re-expansion of forms re­
turned by expansion functions is usually, but not always, 
desirable. Sometimes it is important that either the new 
top level expression or some of its subexpressions not be 
expanded further, or that a different expansion function 
be applied to these expressions. A case in point is the 
above call-by-name expansion, in which it is not appro-

priate to perform the expansion on the application in­
troduced by expanding an identifier reference, or on the 
lambda expression introduced by transforming an assign­
ment expression. In other cases, such as some of the de­
bugging tools to be presented later, it is important that an 
expansion be performed only on selected subexpressions. 

Finally, consider the problem of defining a syntactic 
extension that allows the definition of new syntactic ex­
tensions that are only effective within its lexical scope, in 
the manner of macrolet [6]. This requires that the body 
be expanded with an augmented expander obtained by 
extending the current expander so that it recognizes the 
new form. 

3. Expansion-Passing Style

In the last section we demonstrated that expanders should 
have control over the further expansion of the forms they 
return. This is analogous to the need for a function to 
have control over how the value that it returns is used 
to continue the computation. Continuation-passing style 
(CPS) may be used to give the function this power [4,5,7]. 

In the macro? line of old-style-expand (Figure I), the 
recursive call occurs in tail recursive position. Thus if 
old-style-expand were written in CPS, the macro expan­
sion function could simply be passed old-style-expand 
as its continuation argument and the value returned by 
the expansion function would require no further expan­
sion. This motivates us to modify the traditional macro 
protocol: 

Expansion functions take two arguments, tbe expres­

sion to be expanded and an expansion function tha.t 

must be applied to any form tbat is to be further ex­

panded. 

We call such expansion functions expanders and refer to 
this protocol as expansion-passing style (EPS). 

EPS gives expanders control over whether the entire 
transformed expression is to be expanded further, which 
proper subexpressions are to be expanded, when the ex­
pansions are to be done, and even what expander is to be 
used for further expansion. In most cases the expander 
that is passed will be used, but other alternatives are pos­
sible. 

It is a simple matter to transform a macro expan­
sion function obeying the traditional protocol into an ex­
pander. 

(define macro-to-expander 
(lambda (m) 

(lambda (x e) (e (m x) e)))) 

(Where no ambiguity results, we use the identifiers x and 
e for form and expander arguments, respectively.) 

The system expand function is now defi�ed in terms 
of an initial expander that dispatches on the type of form 
to be expanded. We also define expand-once, which does 
only one level of expansion, and is useful for debugging 
expanders. See Figure 2. Neither expand nor initial -
expander is directly recursive. 
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.. 

(define expand 
(lamlxia (x) 

(initial-expander x initial-expander))) 

(define initial-expander 
(lambda (x e) 

(let ( (el (cond 
((symbol? x) •identifier-expander•) 
((not (pair? x)) (lambda (x e) x)) 
((expander? (car x)) 
(get (car x) '•EXPANDER•))

(else •application-expander•)))) 
(e1 x e)))) 

(define expand-once 
(lambda (x) 

(initial-expander x (lambda (x e) x)))) 

(define •identifier-expander• (lambda (x e) x)) 

(define •application-expander• 
(lambda (x e) 

(map (lambda (x) (e x e)) x))) 

(define install-expander 
(lambda (keyword function) 

(put keyword '•EXPANDER• function))) 

(define expander? 
(lambda (x) 

(and (symbol? x) (get x '•EXPANDER•))))

Figure e. Basic EPS functions. 

It is no longer necessary to include each of the special 
forms, such as lambda and quote, in the system expand 
function. It is only necessary to associate expanders with 
the special form keywords in the same way that new syn­
tactic extensions are defined. With the traditional macro 
mechanism this is impossible, since it is essential that (1) 
some sub-parts not be expanded (for example, the formal 
parameter list of laobda or the literal part of quote), and 
(2) the entire form not be re-expanded (as the expansion
process would not terminate). But expanders can control
further expansion:

(install-expander 'lambda 
(lambda (x e) 

'(lambda .(cadr x) 
.�(map (lambda (x) Ce x e)) (cddr x)))))

(install-expander 'quote (lambda (x e) x)) . 

Factoring the special forms out of the expander incre ases 
modularity, encourages custom variations on the ex­
pander, and allows redefinition of special form expanders. 

Figure 3 illustrates the use of install-expander to 
implement a conventional macro definition interface. The 
essential features of defmacro [6] are supported. (Most of 
the code is dedicated to destructuring the arguments to 
the macro.) 

(install-expander 'defmacro 
(lambda (x e) 

(let ((keyword (cadr x)) 
(pattern (caddr x)) 
(body (cadddr x))) 

(e '(install-expander ',keyword 
(make-macro ',pattern ',body)) 

e)))) 

(define make-macro 
(lambda (pat body) 

(eval 
• (lambda (x e)

(e (let .(destructure pat '(cdr x) '())
,body) 

e))))) 

(define destructure 
(lambda (pat arg bindings) 

(cond 
((null? pat) bindings) 
((symbol? pat) (cons '(,pat ,arg) bindings)) 
( (pair? pat) 
(destructure (car pat) '(car ,arg) 

(destructure (cdr pat) '(cdr ,arg) 
bindings)))))) 

Figure S. defmacro expander. 

Currying of applications and lambda abstractions is 
now straightforward; see Figure 4. We might expect the 
second cond clause in the redefinition of •application­
expander• to be 

((null? (cddr x)) Ce '(,(car x) ,(cadr x)) e)). 

However, this would loop indefinitely. Invoking e on a 
two element application will cause the same clause to ·be 
reentered. 

The call-by-name transformations outlined in the last 
section may now be obtained by changing the meaning 
of application, identifier and set! forms; see Figure 5. 
If let were used in the expansion of set!, the let form 
would have to be further expanded ( assuming let is im­
plemented as a syntactic extension); but this expansion 
would result in the by-name application transformation 
being applied to the application resulting from the let 
expansion, which would be an error. Thus when writing 
the set! expansion it is necessary to manually expand 
the let. Sometimes great care is required when writing 
expanders! 

The factorial function may be defined in a way that 
dramatizes the normal order evaluation semantics: 

(define Y

(lambda (f) 
((lambda (x) (f (xx)))

(lambda (x) (f (x x))))))
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(define factorial 
(Y (lambda (1) 

(lambda (x) 
(let ((a (name-zero? x)) 

(b (name-• x Cf (name-sub1 x))))) 
(if a 1 b)))))) 

where name-zero?, name-• and name-sub1 are versions of 
the zero?, • and sub1 primitives that force evaluation of 
their arguments. This only works because the let form 
expands into an application that is then transformed. to 
delay evaluation of the let bindings. 

(set! •application-expander• 
(lambda (x e) 

(cond 
((null? (cdr x)) '(,(e (car x) e))) 
((null? (cddr x)) 

'(,(e (car x) e) ,Ce (cadr x) e))) 
(else 

(e '((,(car x) ,(cadr x)) ,C(cddr x)) e))))) 

(install-expander 'lambda 
(lambda (x e) 

(let ((args (cadr x)) (body (cddr x))) 
(cond 

((null? args) 
'(lambda () 

,G(map (lambda (x) (e x e)) body))) 
((null? (cdr args)) 

'(lambda ,args 
,C(map (lambda (x) (e x e)) body))) 

(else 
'(lambda (,(car args)) 

.Ce '(lambda ,(cdr args) ,Cbody) 
e))))))) 

Figure�- Currying expanders. 

(define delay 
(lambda (x e) 

'(box (lambda () ,(e x e))))) 

(set! •application-expander• 
(lambda (x e) 

'(. (e (car x) e) 
,C(map (lambda (x) 

(if (symbol? x) x (delay x e))) 
(cdr x))))) 

(set! •identifier-expander• 
(lambda (x e) 

'((unbox ,x)))) 

(install-expander 'set! 
(lambda (x e) 

'(set-box! ,(cadr x) 
((lambda (v) (lambda () v)) 

.Ce (caddr x) e))))) 

Figure 5. Call-by-name expanders. 

{define delay 
(let ((g (gensym))) 

(lambda (x e) 
• ( (lambda ( ,g) 

(set-box! ,g 
(lambda 0 

((lambda {v) 
(set-box! ,g (lambda () v)) 
v) 

.Ce x e)))) 
.g) 

(box '•))))) 

Figure 6. delay for call-by-need. 

(define extend-expander 
(lambda (current-expander keyword keyword-expander) 

(lambda (x e) 
{if {and {pair? x) (eq? {car x) keyword)) 

(keyword-expander x e) 
{current-expander x e))))) 

(install-expander 'macrolet 
(lambda (x e) 

(recur loop ((macs (cadr x)) (e e)) 
(if (null? macs) 

(e (caddr x) e) 
(let ((key (caar macs)) 

(pat (cadar macs)) 
(body (caddar macs))) 

(loop (cdr macs) 
(extend-expander e key 

(make-macro pat body)))))))) 

Figure 7. extend-expander and macrolet. 

We may similarly obtain call-by-need semantics, in 
which argument evaluation is delayed as long as possible 
and performed only once; see Figure 6. Here, if the thunk 
made from the argument expression is ever invoked, it 
evaluates the expression, changes its box to hold a new 
thunk, and returns the value. The new thunk merely 
returns the value directly. 

Next we define extend-expander, a function that pro­
vides a convenient means of extending an expander so 
that it recognizes a new syntactic extension with which a 
keyword and expander are associated; see Figure 7. This 
extension technique is analogous to that used in deno­
tational semantics to extend environments. A practical 
use of extend-expander (shown in Figure 7) is to define 
an expander for macrolet, which temporarily establishes 
keyword bindings that are visible only within its body, for 
example: 

(macrolet ((foo (x y) '(list .x .y)) 
(bar ((a) . b) '(list ,a ,b))) 

(append (foo 1 2) (bar {3) . 4))) 

returns (1 2 3 4). 
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4. Debugging with syntactic extensions

As a final example of our expansion mechanism's power, 
we illustrate an approach to the construction of a vari­
ety of debugging tools, including tracers, steppers, and 
inspectors. These tools are obtained using only function 
definition and the syntactic extension mechanism intro­
duced here. This has a number of advantages over other 
approaches to implementing debugging tools: 

• it is portable to implementations of the same lan­
guage that support this style of syntactic extension,
since it is not dependent on the run time architecture;

• it is independent of the method of implementation
( compilation or interpretation);

• its correctness is easily verified, since it is simple and
is defined in terms of the existing evaluation mecha­
nism;

• its simplicity encourages experimentation and cus­
tomization to meet specific needs; and

• the regions of text in which it is effective are easily
controlled and there is no efficiency penalty for code
outside of these regions.
We begin with a simple trace facility that prints each

application before its evaluation and its result after eval­
uation, with indentation provided to keep track of the 
applications in the process of evaluation. This is accom­
plished by redefining the application expander so that 
applications of the form (x1 • • . xn> are expanded into 
expressions of the form 

(trace-form '(x1 Xn) 
(lambda () (� . . . x�))) 

where each :< is obtained by similarly expanding x;. See 
Figure 8. This provides, with remarkable economy, a fre­
quently useful trace facility. 

The following trace illustrates two problems with this 
approach. 

> (let ((x '(a b))) (car (cdr x)))

((lambda (x) (car 
I 
I 
I 
I 

b 

b 

(car (cdr x)) 
I (cdr x) 
I (b) 
b 

(cdr x))) (quote (a b))) 

We would usually like forms other than applications, such 
as let and quote, to be traced. Also, we usually do not 
want to see forms that are not in our souce code, but 
were instead introduced by syntactic extensions, such as 
the lambda application introduced by the let expression 
above. Finally, we may wish to trace only a small part of 
a large program, in order to reduce the volume of trace 
output and improve efficiency. 

(set! •application-expander• 
(lambda (x e) 

'(trace-form '.x 
(lambda () .(map (lambda (x) (e x e)) x))})) 

(define trace-form 
(let ((level O)) 

(lambda (source thunk} 
(do-times (n level} (display "I ")) 
(printf "·s-X" source) 
(let ((result 

(fluid-let ((level (add1 level}}) 
(thunk)))) 

(do-times (n level) (display "I ")) 
(printf n·s·xn result) 
result)))) 

Figure 8. Application tracer. 

These considerations motivate the trace-source syn­
tactic extension that traces all, and only, fol'Jilll occurring 
in the source code of its body. For example, 

> (collB 'c
(trace-source

(let ((x '(a b))) (car (cdr x)}))) 

(let ((x (quote (a b)})) (car (cdr x})) 
(quote (a b)) 

b 

(a b) 
(car (cdr x}} 
I (cdr x) 
I (b) 

b 

(c . b} 

See Figure 9 for the implementation of trace-source . 

(install-expander 'trace-source 
(lambda (x e) 

(let ((e1 (trace-expander (cadr x) e))) 
(e1 (cadr x) e1)}}} 

(define trace-expander 
(lambda (source e) 

(lambda (x e1) 
(if (and (pair? x} (subexpression? x source)} 

'(trace-form ',x (lambda () • (e x e1)}) 
(e x e1))))) 

(define subexpression? 
(lambda (x a) 

(or (eq? x s) 
(and (pair? s) 

(or (subexpression? x (car s)) 
(subexpression? x (cdr s))))))) 

Figure 9. Source code trace facility. 
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Note especially the two occurrences of (e x el) in trace­
expander. If (el x el) were used instead, infinite expan­
sion would result, for trace-expander would be feeding 
on its own output. {It is extra.ordinarily easy to create 
infinite expansion-time loops using expanders!) Using e 
for the next level of expansion avoids this recursion, but 
it would not do to use (e x e): in order for subforms to 
be traced, it is necessary for the expanders at the next 
level to expand their subforms with the trace expander, 
el. Also note that the trace expander carries the original 
source code with it. The full power of EPS is realized 
only when expanders are closures with local state. 

By modifying trace-form, we can turn our tracer into 
a stepper; see Figure 10. step• causes the current expres­
sion to be evaluated without further stepping. This is 
achieved by fluidly ( or dynamically) rebinding trace-form 
to a function that invokes the thunk it is passed. (The 
original binding of trace-form is automatically restored 
by fluid-let when the value of the current expression, 
ans, is returned.) 

Next we endow our trace facility with the powers of 
an inspector: the ability to examine and change the values 
of lexical variable bindings. In order that trace-form have 
access to the run time environment, we replace every ex­
pression of the form (lambda (id1 ... idn) body1 ... bodym) 
within the scope of trace-source with one of the form 

(lambda (id1 . . . idn) 
{trace-lambda-body 

• (id, . . . id,.)
(list locative 1 • • • locative,.) 

(lambda () body� . . . body!,,)))

where body; is obtained by expanding body,, and the loca­
tives give trace-lambda-body access to the bindings of the 
formal parameters. See Figure 11. The locative for iden­
tifier id is represented as a functional object that responds 
to the get and put messages by returning the ·current 
value of id and a function that assigns a given value to 
id, respectively. trace-lambda-body fluidly assigns to the 
trace environment a list of identifier-locative pairs cor­
responding to the lambda expression's arguments. The 
trace-form commands see and set! may then be used to 
inspect and modify the environment bindings of the local 
contour. 

By redefining trace-lambda-expander it is possible to 
inspect all visible environment bindings; see Figure 12. 
•all-vars• is fluidly bound, at expansioll time, so that it 
lists all visible identifiers in the current lexical environ­
ment. This list is then used in place of the lambda formals
list when constructing •trace-env•.

Common Lisp provides a special form, compiler-let, 
to give the programmer limited control over the state 
in which macro expansion occurs. AB this last version 
of trace-lambda-expander demonstrates, the use of fluid 
variables provides this control without the need for addi­
tional machinery. 

This technique of implementing a debugger is compa­
rable in run time efficiency to other debuggers, and pro-

(define trace-form 
(lambda (source thunk) 

(recur loop () 
(printf "-s: " source) 
(case (read) 

(step 
(let ((ans (thunk))) 

(pri.ntf 11
-s returns -s-X" source ans) 

ans)) 
(step• 
(fluid-let ((trace-form (lambda (s f) (f)))) 

(let ((ans (thunk))) 

(else 

(printf rs returns -s-X" source ans) 
ans))) 

(printf "options: step, step•") 
(loop)))))) 

Figure 10. trace-form for a stepper. 

vides all the advantages mentioned at the beginning of 
this section. But it does have one drawback: it generates 
voluminous code. In some cases this would be a serious 
problem. In other situations, where the region in which 
debugging is enabled is of moderate size, the advantages 
of this approach to debugging more than compensate for 
the increase in code size. 

5. Conclusion
We have proposed a syntactic extension technique, called 
expansion-passing style {EPS), that !s significantly more 
flexible than the traditional mechanism. It allows se­
lective expansion of subexpressions, expansion of subex­
pressions using modified expansion functions or modified 
state, and expansion of application and identifier forms. 
It also simplifies the expansion algorithm and improves 
modularity by factoring out special forms. EPS may be 
easily incorporated into most Lisp systems without the 
need for system level programming. 

Though EPS is a substantial improvement over 
the traditional approach to syntactic extension, it does 
present a few difficulties. We have already shown in­
stances in which programming with expanders is error 
prone: it is easy to perform unwanted, or even infinite, ex­
pansions. Our defense is that ( 1) powerful tools frequently 
require great care in their use, and (2) if the power of this 
mechanism is not required, there need be no danger in 
its use. (We have shown that traditional macro expan-

. sion facilities, such as defmacro, can be provided in the 
more general EPS context.) Another problem is that we 
have found it necessary to bind •application-expander• 
and •identifier-expander• in a different manner than 
other expanders. Thus install-expander and 1Dacrolet 
cannot be used to redefine the application and identifier 
expanders. The root of this problem is that an expander 
cannot tell until all code has been expanded whether a 
given form is an application or not. This in turn results 
directly from the overloading of symbols to denote both 
identifiers and keywords in traditional Lisp syntax. 
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(install-expander 'trace-source 

(lambda (x e) 
(let ((el (extend-expander e 'lambda 

trace-lambda-expander))) 

(let ((e2 (trace-expander (cadr x) el))) 

(e2 (cadr x) e2))))) 

(define trace-lambda-expander 

(lambda (x e) 

'(lambda ,(cadr x) 

(trace-lambda-body 

',(cadr x) 

(list ,C(map locative (cadr x))) 

(lambda () 

,C(map (lambda (x) (e x e)) (cddr x))))))) 

(define locative 

(let ((msg (gensym)) (x (gensym))) 

(lambda (id) 

' (lambda (. msg) 

(if (eq? ,msg 'get) 

.id 

(lambda (.x) (set! ,id .x))))))) 

(define •trace-env• '()) 

(define trace-lambda-body 

(lambda (vars vals body) 
(fluid-let ((•trace-env• (map cons vars vals))) 

(body)))) 

(define trace-form 

(lambda (source thunk) 

(recur loop 0 

. (printf "-s: " source) 

(case (read) 

(step 

(let ((ans (thunk))) 

(printf "-s returns -s-X" source ans)

ans)) 

(step• 

(fluid-let ((trace-form 

(lambda (s f) (f)))) 

(let ((ans (thunk))) 

(see 

(printf n-s returns -s·x0 source ans) 

ans))) 

(for-each 

(lambda (x) 

(printf n·s = -s-x" 

(car x) 

((cdr x) 'get))) 

•trace-env•)

(loop}) 

(set! 

(let• ((id (read)) 

(val (read)) 

(pair (assq id •trace-env•))) 

(if pair 

(begin 
(((cdr pair) 'put) val) 

(printf n·s : -s-x" id val)} 

(printf "id ·s not found-X" id))) 

(loop)) 

(else 

(printf "options: step. step•. see. set!") 

(loop)))))) 

Figure 11. A stepping inspector. 

The critical difference between the facility proposed 
here and the traditional macro mechanism is that expan­
sion functions are passed not only an expression to be ex­
panded, but also another expansion function. This func­
tion may or may not be used to perform further expan­
sion. This is analogous to passing an explicit continua­
tion to a procedure, which is well known to be a powerful 
programming technique (for example, see [1,7)). In this 
paper we have demonstrated that the closely related tech­
nique of passing expanders explicitly provides a powerful 
tool for defining syntactic extensions. 

Acknowledgment: This material is based in part on work 
supported by the National Science Foundation under 
grant numbers MCS 83-04567 and MCS 83-03325. 

(define •all-vars• '()) 

(define trace-lambda-expander 

(lambda (x e) 

(fluid-let ((•all-vars• 

(union (cadr x) •all-vars+))) 

'(lambda ,(cadr x} 

(trace-lambda-body 

',•all-vars• 

(list ,C(map locative •all-vars•)) 

(lambda 0 

,C(map (lambda (x) Ce x e)) 

(cddr x))})}))) 

Figure 11!. A visible environment inspector. 
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