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Abstract--Hendrix's robot modeling system presented a simulation method in which time is 
represented as a continuous phenomenon. This paper introduces the language CONCUR, which 
realizes Hendrix's concept through an extension of the LISP environment. CONCUR uses gener- 
alized procedures (scenarios) operating in a data-driven mode to implement Hendrix's events. The 
heart of CONCUR is a generalized pattern-matcher which permits operators within the patterns 
to bind variables and modify the match process. We include several detailed examples in addition 
to an implementation of the pattern matcher. 

Continuous simulation Robot modeling World modeling Processes 

1. I N T R O D U C T I O N  

Hendri× made two major contributions in his paper [1] on robot modeling systems. The 
first was to robotics exclusively. Since the robot represents its environment with a world 
model, which is a structure consisting of objects, relationships and operators, Hendrix 
suggested that we consider world models with many causal agents. Such a model would 
be a collection of on-going processes, much like the processes in a simulation system. 

Hendrix's second contribution was in the design of a new simulation system appro- 
priate for artificial intelligence research. In this system "'events" are characterized by (1) 
initiation conditions; (2) continuation conditions (i.e. conditions which predicate the 
continued instantiation of the event); and (3) effects on the world. The system becomes 
responsible for event invocation and duration. In terms of the robot model, the robot is 
freed of its omnipotence-- i ts  participation in every event. The world becomes a universal 
interface between events. 

One resulting innovation is the perception of time as a continuous phenomenon. This 
can be simulated by using time dependent functions as parameters. Any reference to such 
a parameter results in the evaluation of the expression which represents the function at 
the given point in model time. Similarly, initiation conditions and continuation con- 
ditions are implemented as collections of facts regarding the world. If all initiation 
conditions hold at a given moment, the event initiates and continues as long as all of the 
continuation conditions are present. 

Hendrix simulates parallelism by utilizing a process monitor, which maintains a set of 
process models and the world model as well. Events are controlled from this monitor by 
control blocks which exist throughout the duration of a given process invocation. The 
monitor acts as a medium for communication between each process and the rest of the 
world by monitoring the control blocks and creating and destroying blocks as needed. 
Progress in time is simulated within the monitor by advancing the model clock between 
moments of activity. With this methodology, Hendrix is able to achieve (as described in 
the abstract in Ref. [ 1 ] ) "a  mechanism which makes possible the modeling of (1) simul- 
taneous, interactive processes: (2) processes characterized by a continuum of gradual 
change: (3) involuntarily activated processes (such as the growing of grass); and (4) time 
as a continuous phenomenon." 
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Hendrix's simulation system was originally implemented in FORTRAN. The nota- 
tion was more specific than was necessary, for example time-dependent variables in 
Hendrix's notation were distinguished, and every reference to a time-dependent variable 
was mediated by the system. Maintenance of time-dependent variables in this way 
required much machinery. (Lowrance and Friedman [2] faithfully implemented Hen- 
drix's notation.) Hendrix sacrificed elegant notation to allow for an efficient implementa- 
tion, envisioning that implementation as a complex program manipulating complex data 
structures. For example, time-dependent variables were distinguished as such in Hen- 
drix's system. 

We envision a different type of implementation, a system that does away with the need 
for Hendrix's notational devices. For example, we want time-dependent variables to be 
indistinguishable from those that are time-independent. In order to clarify and generalize 
Hendrix's ideas, we choose to implement his world modeling system as a language 
CONCUR.  C O N C U R  is implemented in and is an extension of LISP, which the reader 
is assumed to know. 

By implementing Hendrix's system as a language, much power and flexibility is 
achieved. Events may perform arbitrarily complex calculations at any point in a pro- 
gram. A construct invented for a specific use, such as * for time-dependent variables, can 
be made generally available. The language therefore makes more general use of the 
power of the Hendrix system. 

C ONC UR  embodies three major innovations. First, CO N CU R makes no explicit 
reference to simulation. On the surface, an event simply contains an initiation condition, 
manipulates the world model, and specifies a continuation condition. Simulation is the 
resultant side-effect of these actions. An event does not explicitly refer to other events; it 
influences other events indirectly, through its effects on the world model. The program- 
mer's environment is much simpler. 

The second innovation is CONCUR's  event initiator, which is a generalized pattern 
matcher. An event is a demon, a data-driven function. CO N CU R does not use "'if- 
removed" or "if-used" demons [3], but instead employs logical formulae to specify the 
state of the world model which should initiate events. Event initiation can be made very 
simple, exact and efficient. 

The third innovation is the unification of LISP. Functions, assertions and variables are 
seen to be instances of a general entity, called a pattern, and are evaluated using identical 
methods. As a result, they are indistinguishable. Moreover, an expression is indistinguish- 
able from the function it invokes. This unification of LISP is accomplished through 
sophisticated pattern matching. 

C O N C U R  utilizes much of the methodology of earlier knowledge-based problem- 
solving systems. The use of pattern-matching for event invocation was suggested by 
PLANNER [4]. The event scenarios, which use and-or trees in their initiation con- 
ditions, strongly suggest production rule systems such as MYCIN [5]. CO N CU R differs 
fundamentally from these systems inasmuch as it is not generally interactive, and it 
maintains a control structure which is data-driven rather than goal-driven. CONCUR,  
unlike the robot system STRIPS [16], is not problem oriented, but does operate using 
inference rules as provided by the scenarios. What is unique about CO N CU R is that it 
uses generalized procedures to drive a system in which time appears as a factor. CON- 
CUR was introduced in Ref. [6] as a generalization of the system presented in Ref. [2]. 

In the next section we present an overview of CONCUR,  and develop the language 
more formally in Sections 3 and 4. Section 5 contains some examples, and our conclu- 
sions appear in Section 6. 

2. THE BASIC ELEMENTS OF CONCUR 

In this section we shall introduce the reader to C O N C U R  by developing a single 
event, a robot in motion. First, however, we must consider a crucial point: the represen- 
tation of the world model. The most natural way to represent this structure is as an 
extension of the LISP "environment", or "association list". While the LISP structure is 
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limited to assigning values only to atoms we impose no such restrictions. Thus, more 
complex entities which we shall call items, assertions or patterns can be given values, 
and the list of such item/value pairs comprises the world model. The notation for such a 
pair will be "item - value". 

Some entries in the world model describe the current state of the world by either 
having assertions as items with value TRUE (T), or by assigning curre~lt values as 
parameters. Thus one can describe a robot's location by either asserting (robot at 
A) - TRUE or assigning (robot location) -- A. In an optimal implementation either 
could be used. The subset consisting of such world model elements shall be called the 
state of the world model (SWM). 

Among the assertions in the SWM may be some which match the components of an 
event initiation condition. If these assertions produce values which cause a total match 
(described below) with the initiation condition, then the event body (which is the world 
model "value" of its initiation condition "item") is invoked. The item/value pair "initia- 
tion condition" -- "event body" will be called a scenario [4]. 

As a simple example, consider a robot which is to move from outside to inside a room. 
The command (robot move in room) --- TRUE is placed in the SWM. If the initiation 
condition of the event which moves the robot consists only of the assertion trobot move 
in roomt then the event can be invoked, since the expression matches the SWM assertion. 
To change the location, we use ((robot out r o o m ) ~  (robot in room)). The operator 
replaces the item field of the pair (robot out room) - TRUE with (robot in rooml, 
yielding the new pair trobot in room) - TRUE and effectively changing the SWM as 
desired. (--~ is an assignment operator which alters the item constituent of an SWM 
entry. Its more common counterpart, ,---, will appear as well further on). 

Since the task has now been completed, we must remove the command from the SWM 
with ( ~  [robot move in room)). The scenario for the event is 

tlrobot move in room) ~1t 

[block 
[[robot out r o o m ) ~  (robot in room)) 
(~  [robot move in room)) )) 

("block" is a function which evaluates all of its arguments). 
Already at this point several important issues must be clarified. Although the "initia- 

tion condition" - "event body" form is clear (so that the above scenario could appear 
exactly as shown in the world model), we have informally introduced three functions, 
block, ---~, and W, which have a side-effect on the world model. Indeed, this is the only 
action taken. We must, however, clarify how these functions treat their arguments. By 
introducing complex patterns as arguments it will also turn out that we have introduced 
more complex evaluation schemes (although it appears here that neither ~ nor 
evaluates its arguments, this is not quite the complete story). The method by which 
functions will be defined and argument-handling determined will be discussed in Section 
4, but if ~ is determined to be strict [8] in its left argument, in the sense that it is 
undefined if that argument does not match an item in the world model, the event will not 
work when the robot is already inside the room, because the assertion Irobot out roomt 
is not part of the world. The event would therefore abort. 

To solve this problem, we should ensure that (robot out room) is in the world, i.e. 
trobot out room) should also be part of the initiation condition. Thus two conditions 
must hold; that is to say, the conjunction of the conditions must hold. Denoting the 
conjunction by (& trobot move in room) (robot out room)), the event becomes 

It& [robot move in room) (21 
[robot out room)) 

[block 
([robot out room)---, (robot in room)) 
(~  [robot move in room)) )) 
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(NOTE: The use of & in the above suggests that initiation conditions can be written as 
logical formulae. We can complete the analogy by defining ( v P1 . . .  PN) to hold if one of 
the Pi matches an SWM assertion, and (~  P) to hold only when P does not match 
anything in the SWM. T and NIL are assertions that are respectively always part of, and 
always not part of, the SWM. Any logical formula built from assertions can be used as an 
initiation condition.) 

An event to move from inside to outside a room could also be written, and would be 
similar. It's desirable to write a single event to cover both cases. In such an event, 
entering and exiting must be distinguished; a simple distinction is the command specifi- 
cation. The commands (robot move in room) and (robot move out room) differ only in 
the direction specification. 

In order to introduce this kind of generality, we must be able to bind the specified 
direction and use the bound value in the event body. The value will depend upon the 
assertion present in the SWM which initiates the event. We express this binding syntacti- 
cally in the pattern by prefixing the local variable with = ,  to indicate that the component 
is a template for matching any SWM assertion which could instantiate the prefixed 
variable. In our example we could use (robot move = t o  room) as a template for (robot 
move out room) or (robot move in room), which when matched binds "to" to "out" or 
"to" tO "in" respectively. 

To write the event body, we must somehow be able to use --* with the unspecified 
argument patterns. Since the robot  has to be somewhere, the pattern (robot at ?x), where 
?x indicates a universal (but consistent) template, will always seek the SWM item de- 
scribing the robot 's location and so we can use this for our left argument. The right 
argument uses the binding: (robot *to room), where * indicates evaluation of the prefixed 
quantity before matching, and so we get 

((robot move = t o  room) (3) 

(block 
((robot ?x room)-- .  (robot *to room)) 
(~  (robot move *to room)) )). 

Note first that ---, and ~ must both be designed to evaluate those components of its 
arguments for which evaluation is explicitly called. Thus the arguments are "quasi- 
quoted" [17] or, using our terminology, "unlisted" in our design for --~ and ~.  We also 
note that if *to and ?x happen to be identical (so that the robot was told to go where it 
already was), there is no change except the deletion of the command. 

An obvious generalization of (3) is having more places for the robot to move. Suppose 
locations A. B, C, D, and E are in a room. Let (robot move to X) be the command and 
let the robot 's location be denoted (robot at Y). The scenario is very similar: 

((robot move to = to)  (4) 

(block 
((robot at ?x)--. (robot at *to)) 
( ~  (robot move to *to)) )). 

Now we shall introduce the concept of duration to the events by adding the SWM 
assertions (speed robot) and (distance between A and B), with corresponding values, so 
that the duration required for the execution of this event is ((distance between A and 
B)/(speed robot)). We add to the scenario the function (resume after t), where t is evalu- 
ated, which acts to separate the preceding and succeeding statements by an elapsed 
model time of t. The resulting scenario is 

t(&(robot move to = to) (5) 
Irobot at =from)) 

(block 
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( 2  (robot move to *to)) 
((robot at *from)---. (robot moving from *from to *to)) 
(resume after ((distance between *from and *to)/ 

(speed robot))) 
((robot moving from *from to * t 0 ) ~ ( r o b o t  at *to)) )). 

The execution of the resume function causes model time to be consumed. After the 
given amount  of model time elapses, resume terminates, and the next line is executed (All 
other expressions in the block, before and after the resume, can be viewed as executing 
simultaneously.) In (5), (speed robot) is an assertion in the world model with a value used 
in the computation, and (distance between *from and *to) also matches an assertion in 
the SWM whose value is used. Scenario (5) also includes the first appearance of an 
arithmetic operator , / ,  which we have assumed behaves in the usual fashion and evaluates 
its arguments. This shall be true for +,  - and x as well. 

Our final version of this event introduces the crucial concept of continuity. Scenario 
(5), the most sophisticated so far, only allows for three discrete states to be placed in the 
SWM land hence made known to the rest of the events). We could conceive of the robot 
as being on a straight doubly infinite track with each point on the track denoted by a 
real number. In moving from "from" to "to" (now real numbers) the robot 's location at 
model time t would be 

(from + (speed robot) x (t - to) x (sign (to - from))) 

where to is the time at event initiation (we have assumed that all arithmetic functions 
evaluate their arguments). The robot 's location, now a time dependent variable, must be 
identified with this formula. 

We now represent the robot 's location as a parameter which is given a value in the 
SWM, e.g. ((robot location) - 2.5). At times when the robot is in motion, the value of 
this parameter will be the formula described above. The assignment operator  ~--, which 
unlists its arguments, can be used to make the replacement. We use the global variable 
time, which always evaluates to the current model time, and as a result of unlisting, to 
becomes *time. Thus it would seem that having 

((robot location)~--(*from + *(speed robot) x (time - *time) 
× *(sign (to - from)))) 

would be sufficient. However, performing the evaluation *(robot location) would produce 
the formula itself, and not its value, which would require **(robot location). This is 
undesirable since it requires any event referencing (robot location) to know when a 
formula is present--this fact should be invisible. We solve this problem by having * 
coerce any leading operators in the value it produces and by passing a "quoted" * as a 
prefix to the formula. The quoting is accomplished by the prefix I, derived from a LISP 
character which performs a similar service, referred to as an "unspecial". The combined 
prefix I* signifies to any unlisting that * is to be passed into the function literally, 
effectively delaying its invocation. Thus 

((robot location)*--[* (*from + (time - *time) 
x *(speed robot) 
x *(sign (to - from)))) 

will put, say 

(robot location) = *(4.1 + (time - 2.121) x 3.1 x -1 .0 )  

into the SWM. The complete scenario for a robot in motion is therefore 

((robot move to = to)  

(block 
( 2  (robot move to *to) 

(6) 
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((robot location),--r* (*from + (time - *time) 
x *(speed robot) 
x *(sign (to -from))))  

(resume after ((abs (to - (robot location)j) 
/ (speed robot))) 

((robot location) ,-- *to) )). 

Both unlist and unspecial will be described more fully in Section 3. 
We can generalize this event by removing the robot from the track and allowing it to 

move freely within an N x M rectangle. Each location is a point (x,y), with 0 ~ x ~ N 
and 0 ~ y ~< M. When it is in motion the value of (robot location) in the SWM becomes 
(F1, F2), where each Fi has a similar form as the formula in (6). We could write a scenario 
analogous to (6) by introducing the functions o n e  and t w o  (which produce the first and 
second elements, respectively, of their arguments). However, it is also necessary to aug- 
ment the initiation condition to reflect the finite robot domain, i.e. the final location (tol 
to2) should be inside the rectangle. This can be accomplished by an SWM assertion, 
dimension = (N, M), and an initiation condition of the form 

(&(robot move to (=  tol  = to2)) 
*(0 ~< tol  ~< (one dimension)) 
*(0 ~< to2 ~< (two dimension))). 

Using * in an initiation condition in this manner indicates evaluation of these pattern 
predicates before matching (recall: T always and NIL never matches the SWM). 

Another important facility for complex events is the ability to allow the duration to be 
controlled by SWM conditions. For instance, the robot could move as described above 
unless it receives a new command to move. By enhancing the previously defined resume 
statement to (resume after t unless c), where c is a pattern that is unlisted, any event 
continuing over time can continuously check the SWM for a match with c, and terminate 
the waiting period as soon as such a match no longer succeeds. (The "unless c" is, of 
course, optional). 

Finally, we allow for the fact that there may be more than one robot present in the 
room by using "robot" as a variable. We have the following scenario: 

((& ( = robot move to (=  tol  = to2)) (7) 
*(0 ~< tol ~< (one dimension)) 
*(0 ~< to2 ~ (two dimension))) 

(block 
( ~  (*robot move to (*tol *to2)) 
((*robot location) ,--- 

(1 *(*(one (*robot location)) + (time - *time) 
x (speed *robot) x (sin (angle (*robot location) (tol to2)))) 

I*(*(two (*robot location)) + (time - *time) 
x (speed *robot) x (cos (angle (*robot location) (tol to2)))))) 

(resume after ((distance (*robot location) (tol to2))/(*speed robot)) 
unless (& ( -7 (robot move to ??) 

I*(eq (speed *robot) *(speed *robot)))) 
((*robot location) ,--- *(*robot location))) ). 

Here (cos 0), (sin 0) and (angle vl v2) are obvious. 
The continuation conditions in the resume statement require that no other move 

command be present, and that the robot's speed remains constant. Functions which 
normally require an SWM value, such as the arithmetic operators, distance, cos, sin and 
angle evaluate their arguments, while those which are driven by pattern matches, such as 
the continuation condition part of the resume (following "unless") unlist theirs. These 
specifications will turn out to be at the user's discretion. 



CONCUR : A language for continuous, c~ncurrent processes 169 

This last event is sophisticated and powerful, but must fit into the world and interface 
cleanly with all other events. For example, if a robot is grasping an object and the robot 
moves, the object moves with it. The event that does this can be represented by the 
following scenario: 

((& (=  robot grasp = object) 
(*object movable)) 

((*object location) ~--1*(robot location))). 

Any reference to this object's location will unknowingly become a reference to the robot's 
location. 

We have not even begun to cover the complex control problems of even this simple 
case (for example, with several robots moving simultaneously, there is the possibility of 
collisions). What we have done is present a medium in which we can deal with such 
problems. This medium relies on decomposing the control into a system of cooperating 
modules which have the advantage of being easy to write and general enough to allow 
changes in the simulation to affect only a few modules (thus promoting experimentation). 
To summarize this section, we have shown the following about CONCUR:  

1. The principal data structure, the SWM, is modeled after the LISP association list, 
taking the form 

item - value. 
2. An event appears in the world model as a scenario: 

initiation condition - event body. 
3. The initiation condition is a pattern, which is matched against the SWM, seeking to 

invoke the event body. 
4. Arithmetic, and relational operations, and operations which change the world model 

both initiation conditions and event bodies. The effect of an event appears as a side-effect 
to the SWM. 

5. Pattern prefixes are available for the sophisticated pattern-matching used in all 
aspects of CONCUR's  activity. These will be discussed in the next section. 

6. Time-dependent values are indistinguishable from those constant over time. 
7. Event duration can be controlled by continuation conditions, or be fixed. 
8. Complex control problems can be handled as small interacting modules. 

3. FUNDAMENTAL PROPERTIES 

The heart of C O N C U R  lies in the generality of its pattern marcher. This is ac- 
complished through the use of operator prefixes (some of which appeared in the last 
section), and an approach which reduces the distinction between pattern template and 
data. In this section we shall examine the operator  prefixes in detail, and show how 
pattern matching can be used to control the simulation achieved by CONCUR.  A 
detailed description of the implementation of the pattern matcher will be given in the 
next section. 

In all, there are ten prefixes which can be concatenated to the left of a pa t t e rn  *, • $, !, 
?, ', = ,  ';, ?., and $ (the last three shall be referred to as "modified"). The purpose of these 

prefixes is to change expressions during the matching process, or alter the process itself. 
We have already seen *, = ,  and ? used in the last section, and have discussed them 

informally. Let us now consider these operators once again in a more formal setting. 
The binding operator, =,  should not be confused with ,--, as the relationship is 

analogous to that between LISP lambda variables and setq. Each scenario maintains a 
copy of the SWM onto which these bindings are added, and which disappear once the 
event has terminated. Thus the scope of such bindings can only extend into the event 
(and any subsequent event invoked from within). It should be noted that a match in 
which one of the elements is prefixed by = will not be continued into the substructure of 
the prefixed element. Thus matching =( robo t  location) against (robot at A) (or, notatio- 
nally, = ( robo t  location) /1 (robot at A)) will succeed, in spite of the fact that (robot 
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location) does not itself match (robot at A), and produce the pair (robot location) -- 
(robot at A). When it appears, = must be the leftmost prefix. 

The evaluator, *, is analogous to LISP eval but faces one additional problem in that 
since list structures can be given values it is impossible to distinguish between variable or 
constant and functional evaluation, as in the case of eval. The order of attempted evalu- 
ation is as follows: 

1. atoms: 
(a) CONCUR evaluated SWM value of matching assertion 
(b) primitive value; 

2. prefixed expressions: evaluation after applying prefixes (i.e. unlisting); 
3. quoted expressions: expression; 
4. lists: 

(a) CONCUR evaluated SWM value of matching assertion 
(b) Application of primitive function to CONCUR-evaluated arguments. 

(Primitive values include numbers and truth values; primitive functions include LISP 
primitives.) These semantics make possible the writing of functions as SWM pairs, as 
discussed below. 

The unlist operator, :, causes the prefixed expression to be returned with all internal 
prefixed expressions processed. We saw in the last section that unlisting is an important 
technique for handling function arguments, as it substitutes values for identifiers at 
various points in a pattern argument. We have also seen that it is possible to pass an 
operator literally into an unlisted expression by protecting it with I. Another way of 
protecting an expression is by quoting it, whereby the unlisting will not continue into the 
expression (note that the quote itself can be protected by I ). Unlist is specified as follows: 

: atom = atom 
: (op)(express ion)  = appl((op), :(expression)) 
:[ (op)(expression)  -- (op)  : (expression) 
: ' (expression)  -- (expression) 
: (Sl .. Sn) = (:Sl ,. :Sn) 

where appl(a,b) represents the application of operator a to pattern b. 
The prefix ? represents a consistent universal match with any other atom. The atom ?? 

represents a universal match which need not be consistent. The operator ' represents the 
usual QUOTE. 

Much versatility is achieved using the remaining prefixes. Let us first consider the 
spanning operator, !. With the machinery already developed, we are not able to imple- 
ment the action of functions which take an arbitrary number of arguments (like LISP 
FEXPRs and MACROs). In such functions the list of arguments is bound to a single 
variable. To accomplish this we introduce the spanning operator for the purpose of 
matching arbitrarily many arguments. 

Whenever ! appears as a prefix, the other pattern is spanned until the match can 
continue at the same level (or otherwise fail). If ! prefixes the same element more than 
once, the span must be consistent. For example, (robot !do for me) will match (robot go 
to the store for me), (robot (go to) the (store) for me), and (robot (go to (the store)) for 
me), but not (robot (go to the store for me)) or (robot (go to the store) (for me)). If we 
have (robot !do for me now and !do for me later), both instances of !do must match the 
same ~.-'an, thus (robot go to store 1 for me now and go to store 2 for me later) will not 
,~atch. 

The operators which we have examined so far perform useful and necessary alterations 
on patterns but it is often necessary to alter a pattern in a special way, such as transform- 
ing X to (quote X), or to test a pattern before attempting the match. Do-it-yourself 
operators can be designed using the extension prefix, $. Syntactically the $ serves as a 
delimeter for an extension expression, i.e. SeSexp, which is itself modeled as a SWM pair. 

The semantics of the extension operator are simple. The "item" of the extension 
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expression is matched against the prefixed operand. If this match succeeds, then the 
unlisted "value" of the extension expression is returned (this unlisting occurs in an 
environment in which any bindings obtained during tlSe "item" match are maintained). 
Otherwise the overall match fails. 

For example, the aforementioned alteration is accomplished by $( = X --- (quote *X))$Y. 
In another example, the operand is tested as to whether it is a list by $((=!X) = *X)$. As 
a convenience, and for the purposes of recursion, expressions of the form $*X$ will 
substitute the extension expression bound to X. Thus placing listp = ((= !X) - *X) in 
the SWM allows $*listp$var to test for a list. 

The three modified operators, ~, ~" and $ are identical to their unmodified counter- 
parts except that they are applied to the corresponding element in the pattern being 
matched. Thus if place = house, then (robot go to ~;house) would match (robot go to 
place), since the evaluator is applied to "place" before matching (this is eguivalent to 
(robot go to house)/a (robot go to *place)). As another example, if =$*listpSvar appears 
in a pattern, the binding will take place only if the element being matched is a list, so that 
$..$ acts as a filter for the binding operator. The use of o n e  and t w o  in (7) of Section 2 
could have been eliminated by placing in the initiation condition $((robot location) - 
*(robot location)~ =from1 = from2), binding each component separately (much like an 
embedded lambda in LISP). Finally, to illustrate the power of using recursion in defining 
operators, we present the wff operator, which is designed to detect logical formulas. 
Defining a logical formula using BNF style [9] as 

then we have 

(logic form) : := atom l 
(AND (logic form){ (logic form)})l 
(OR (logic form)[(logic form)l)  
(NOT (logic form)) 

w f f  - ( (& (v ?? 
(AND!i*wffSX) 
(oR !S*w~X) 
(NOT $*wff$X)) 
= X )  

*x) 

If modified operators are to be applied to a pattern possessing its own operator string, 
then the string of modified operators is essentially concatenated onto the left of the other 
string (but to the right of =). Thus : *expl p = *$eSexp2 results in expl p --- :**$eSexp2. 
We can therefore require, without loss of generality, the following syntax for operator 
strings: 

(op str ing): :  = I=  }I';, ~, Sd}{! } {';, .?, Sd~ {*, :, $e$1 I ? [ ' 

It should be pointed out that those modified operators to the right of ! are applied term 
by term, while those to the left are applied to the entire spanned list. 

The generality of these pattern operators makes it possible to define functions within 
the framework of the world model. Consider, for example, the assignment function ~--, 
which was used frequently in the last section. It is possible to describe a "call" to this 
function with the template (=~before ,--- =~after), which will in fact bind the arguments. 

We can use the pattern matching mechanism to control functions by writing function 
definitions using this specification as initiation condition (this may appear difficult since 
functions of this sort seem to be outside the language, but recall that * has the capability 
of passing the evaluation into LISP). The pattern matching machinery will then execute 
function calls naturally within the context of its normal operation. Functions therefore 
become small events (or events become large functions). 



172 RICHARD M. SALTER et al. 

Specifically, a function specification does two things: 
(1) The specification describes the format of an invocation of the function. For 

example, ( = :be fo r e -*  =~after) will match any three element expression whose middle 
element is --,. Thus any such expression becomes an invocation of the - ,  function. If an 
expression matches a function specification, then the expression invokes that function. 

(2) The specification describes the treatment of parameters. It can call for evaluation. 
unlisting and/or  binding. For  example, (=  :before--, = :after) specifies that the first and 
third elements of the matched expression are to be unlisted and both values are to be 
bound. This use of = is analogous to binding parameters in events. 

Any prefixes may be used in a specification. The result of all this is that a function used 
in manipulating the SWM can itself be placed there. This includes LISP functions as 
well. 

In the light of this technique for handling functions we can explain our syntax for 
arithmetic operations. We use the specification (=';left + =a!right) for addition, and 
similar specifications for the other operators, and the reader should recognize this as 
being able to handle strings of arithmetic operations, e.g. (A + B × C + D), which are 
associated to the right. The spanning operator can also be used to implement a LISP 
FEXPR by simply writing (fn =!param) or (fn =!~param), if one wants the arguments 
evaluated, as in list. 

With the concept of function as event, we see that it is possible to implement a single 
data s t ructure-- the world model or association l ist-- to hold functions (specification - 
function body), events (initiation condition - event body) and SWM data (item - 
value). The distinction between each of these different "types" is reduced by the fact that 
pattern matching is used in each case as the accessing tool. There is no distinction made 
between values obtained through functional application or as a result of evaluating 
constants, and the fact that a scenario has been invoked is felt only through side-effects 
to the SWM. 

Because of the similarity in the evaluation of functions, assertions and initiation con- 
ditions, the differences between them is much less pronounced than in other systems. For 
example, (a b) can be a variable name. When the expression (a b) is evaluated, the 
association list is scanned for a match to (a b). If (a b) - X, for some value X, then the 
match of (a b) with itself allows X to be accessed. Hence (a b) can act like a variable. As 
another example, consider a world with several objects, each classified as movable or 
immovable. Movability for a particular object is determined by the pattern (obj mov- 
able). Two solutions are immediately possible. First, assertions of the form (bkt movable) 
-- TRUE could be in the SWM. Second, a function can be used: (=o b j  movable) - 
*(member obj '(...)), where (.. .) is the list of movable objects. Both assertions and 
functions are evaluated the same way, hence the set of assertions is indistinguishable to 
the user from the function. Many other examples can be found by blurring the distinc- 
tions between functions and assertions. 

Initiation conditions use &, v and -~ to form logical formulas. If we also allow these 
logical connectives to appear in assertions, a third solution to the movability problem 
can be devised. We use the assertion (movable ( v  ...)) - TRUE, where once again . . .  
represents the movable objects. Any movable object A will match ( v ...), so (movable A) 
will match (movable ( v .. 3). 

To reiterate, applications of functions, initiation of events and evaluation of functions 
or variables are all controlled by the pattern matcher, which scans the association list for 
matches between its constituents. 

4. THE PATTERN MATCHER 

Pattern matching is usually seen as matching a pattern against data. Patterns are 
viewed as generalized expressions, which can be used to describe and match various data. 
Each datum is seen as representing only one piece of information. 

In CONCUR,  the distinction between pattern and data, like many other distinctions, 
is not made. The three solutions to the movability problem above provide a good 
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example. The conventional view would restrict us to placing an assertion for each mov- 
able object into the SWM. However, using generalized data such as the function (mov- 
able = X) = *(member X (...)), or the pattern (movable" (V...)) - TRUE, in a setting in 
which knowledge of the method used to represent the data is not required clearly adds 
power and versatility to the system. 

This power derives from the ability of "data" to contain operators and logical for- 
mulas. We shall not distinguish between "pattern" and "data", and only use the term 
"pattern". All pattern matching takes place between pairs of patterns. 

Recall that the act of matching patterns is denoted by P1 ~ P2. Since both arguments 
to the match are patterns, we can also consider P2 /~ P1, and we shall require P1 t~ 
P2 = P2/a P1. Before considering the structure of the pattern matcher, we shall examine 
the syntax of patterns. This is given by the following BNF: 

(full pattern) : := ( a tom)  I ? (a tom)  I??1 (logical formula) I 
(s-pattern> 

(logical formula) :: = (s-pattern> I 
(& (logical formula>{(logical formula>})l 
( v (logical formula>l (logical formula>l)l 
( q (logical formula)) 

(s-pattern> :: = (pattern element> I 
( ( pattern element > { (pattern element > } ) 

(pattern element):: = (full pattern> I (op string>(full pattern) 

where ( a tom)  is analogous to LISP atom, and (op string) was defined in the previous 
section. 

Patterns are therefore LISP-like s-expressions which can be modified element-wise by 
prefixes and overall by logical functions. 

We now describe the LISP implementation of the pattern matcher which appears in 
the appendix. It should be noted at the onset that this particular implementation was 
designed to accept LISP input, so that some modification to the operator-prefixing 
syntax was made. Here operator strings have become "pseudo lists", so that =:*$(el 
e2)$robot becomes (=  :^*(el e2) $ robot). To maintain the distinction between these 
structures and s-patterns, certain data structuring functions were required. It is possible 
to implement the operator syntax exactly using explode (or read macrosst, however this 
would not do away with the data-structure problem (we would then have to distinguish 
pattern elements from atoms), and would make the code in Appendix II unnecessarily 
complicated. The functions prop, cmop, op, push and pop are used to detect unmodified. 
modified, or either type of prefix, and to add on or delete a prefix to or from the left of an 
operator string, respectively. We shall not concern ourselves with this any further. 

The overall concept of the pattern matcher is to accept a pair of patterns and return a 
structure called the match record if the match succeeds (and NIL otherwise). This struc- 
ture is composed of the local association list (the world model updated with local 
bindings) and a second association list used only by the pattern matcher for maintaining 
consistency in matches involving ! and ?. The latter consistency table is accessed via the 
function consistent, which is used to check and update this structure when necessary. 

As described above, performing matches against the set of world model items is the 
principal control structure of the language, and so to facilitate such matches we structure 
the world model to consist of a list of all "items" followed by a list of their "'values" in 
corresponding locations. We have designed the constructor (record) and accessing lassql 
functions to reflect this (the consistency table is also implemented this way so that 
consistent can use record and assq). The most striking result of this is the simplicity of 
worldmatch. 

A match between patterns P1 and P2 begins with a call to pmatch with an initial 
match record consisting of the world model and a null consistency table. Pmatch checks 
for the various full pattern possibilities in either argument (atom; logical formula--and, 
or, not; pattern element; s-pattern; in that order), and disposes of the match accordingly. 
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The iftype-result construct which appears here is a programming tool for checking both 
P1 and P2 for a particular category. 

Once one of the patterns falls into a category, the match is sent on (to almatch, andm, 
orm, notm, elm, or smatch, respectively) and the remaining categories must be checked 
for the other pattern. Matches between atoms are one form of bottom match and require 
exact matching (i.e. eq), except for ??. If only one of the patterns is an atom the match can 
continue if the other is either a non-trivial pattern element or a logical formula. 

The presence of one of the three logical connectives will set up calls to pmatch 
involving the constituent arguments, with the local SWM continually being updated with 
bindings as the match proceeds. Andm is called ahead of orm or notm because of a 
special control structure which must be inserted in the event that the match is between 
conjunctive and disjunctive patterns. In such a match it is possible that more than one of 
the disjuncts can successfully match a given conjunct, however the bindings which result 
from proceeding with one of these might block further success in the match while those 
from another might not. Our implementation of andm always introduces the necessary 
backtracking mechanism since any given pattern can be regarded as a disjunction of one 
argument. The relationship between "and" and "or" is important to the matching of 
scenario initiation conditions since a match against the world can be implemented as a 
match against a pattern obtained by "or-ing" the items of the world model. The back- 
tracking requirements are built in as a part of the general matching structure. Orm and 
notm are guaranteed simpler patterns, and so are implemented in an obvious fashion. 

The most difficult (and most common) aspect of matching comes in matching s-expres- 
sions of pattern elements. In fact, with the exception of matches between atoms, the other 
possibilities only result in recursive calls which must eventually end up here. The obvious 
design is for success to depend on being able to recursively match corresponding cars 
and cdrs, but this is complicated by the presence of operator prefixes at various levels, 
and especially by the use of spanning. We must also take into account the fact that some 
operators (i.e. = and !) do not require that the match continue into their arguments. 

Smatch is used to set up the required series of recursive calls, but is able to oversee the 
process of applying operators and spanning. It is realized as a nest of applications which 
strips off and stacks bind, span and modified operators when they are present in the cars 
of each pattern, and creates an environment for further processing. 

The spanning mechanism, when required, is set up at the center of this nest before 
processing continues and the operators are applied. The span is detected during the 
transfer of modified operators to holding stacks and communicated by binding the atom 
"spanner" to variable TSP1 or TSP2 (otherwise these variables are bound to "nospan- 
net"). The span starts with a single argument and backtracks until the rest of the match 
succeeds, or the arguments are exhausted, thus returning the smallest possible span. No 
prefixes are removed from spanned arguments, but they can eventually be applied since 
modified operators from the string in which ! appears are applied argument by argument 
or to the entire spanned list, as indicated. 

A special case is encountered when simultaneous spanning is called for. We must either 
ignore both spans or allow the prefixes to be interpreted from the elements containing 
the spans. We have chosen the latter, but problems of consistency arise, for example how 
to interpret a span-prefixed element that appears inside a spanned list. In our examples 
we have not come upon any "double spanning" but this clearly deserves further consider- 
ation. 

The spanning control lies in the functions span and dblspan. The match process 
continues in ematch where any called for binding takes place (operator application takes 
place in the call to ematch using applyops for the stacked modified operators and 
transform for the others). If a bottom match has not yet been reached, then the function 
di~on will carry the match into the cars of each pattern. Otherwise moveon will continue 
the match directly into the cdrs. Success occurs when and if both cdrs are simultaneously 
NIL. 

Except for the binding and spanning operators, the prefixes are defined directly as 
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LISP functions so that they may themselves be applied (some special treatment of the 
extension prefixes is however required). Modified prefixes are defined to be their unmodi- 
fied counterparts, since the modification is detected in the matching process. The details 
of these functions implement the descriptions given in the previous section. 

Additional descriptions of the particular LISP functions used to implement the pattern 
matcher appear in the appendix as comments. Amongst the more noteworthy program- 
ming tools is ncond, a variation on cond, which allows the user to access the result of the 
test expression in the result expression as the value of the atom DITTO.  

5. E X A M P L E S  

(A) A continuous example 

We now describe an example of modeling a continuous simulation in the Hendrix 
system using CONCUR.  The world is a room, containing a robot called Robby, a 
bucket, a water tap, and the tap's valve. There are six locations in the room: A, B, C, D, 
E, and F. Robby is at B, the bucket is at C, the tap is at D, and the valve is at E. The 
world is shown in Fig. 1, and the entire world model is given in Fig. 2. The commands 
that are required to be in the SWM for Robby to fill a bucket of water are in Fig. 3. 

What follows is the set of scenarios for modeling this activity. We can introduce a 
useful mnemonic for reading the scenarios by substituting "some" or "a'" for = and 
"that" or "the" for *. Thus (=  robot turn = v at = r) is read "some robot turn some valve 
at some rate". We now consider each of the scenarios. 

S C E N A R I O  1: Robot turns on valve 
.1 ((& 
.2 (---robot turn = v  at =r )  
.3 (*robot at =loc) 
.4 (*v at *loc) 
.5 *(0 < r) 
.6 *(r ~< (maxrate *v))) 

.7 (block 

.8 ( ~  (*robot turn *v at *r)) 

.9 ((*v rate)~--*r))) 

Referring to Fig. 3. robot, v, and r would be bound to Robby, vlv and .324 respectively. 

R B T - -  

~--- Bgr TAP I ---~ 
Fig. 1. Robby's World {reprinted with permission from Ref. [2]j, 
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As the S W M  places R o b b y  at B and  vlv at  E, this scenar io  would  fail to ini t ia te  at this 
t ime, since (1.4) would  eva lua te  to NIL .  The  scenar io  can be read  as fol lows:  

" S o m e  r o b o t  turns  on some  valve at some ra te  
That robo t  is at some  loca t ion  
Tha t  valve is at  tha t  loca t ion  
Tha t  ra te  is less than  the m a x i m u m  of  that  valve 

delete  c o m m a n d  
that  valve ra te  becomes  that  ra te ."  

((A is a location) --- ~UE) 
((B is a location) - TRUE) 
((C is a location) - TRUE) 
((D is a location) - TRUE) 
((E is a location) - TRUE) 
((F is a location) -- TRb~O 

( (pa th  A to B) --- 10.0) 
( (pa th  B to C) --- lO.0) 
( (pa th  C to  D) - 40.0) 
( (path  D to E) =- 20.0) 
( (pa th  E to  F) -= 35.9) 
( (pa th  F to A) -- 35.0) 

((Robby i s  a robot)  - ]'Rlg-~) 
((Robby a t  B) ~ TRt~i) 
((P~obby movable) -- TP, t~;) 
((speed l i m i t  Robb.v) ~ 25.9) 

(( tap1 i s  a tap) ~ TRUE) 
( ( t a p l  i lmorable)  - TRUt_') 
( ( t a p l  at  D) :- TRt~) 
( (g raspab le  t ap l )  -- TRI~!) 

( (bkt  i s  a bucket) ~ TRUf) 
( (bkt  movable) -- TRb]2) 
( ( c apac i t y  bkt)  ~ 100.0) 
( (bkt  a t  C) z TRUE) 
( (g raspab le  bkt)  -- TRI~!) 
( (content  bkt)  r_ 0.0) 

( (v lv  i s  a yah ' e )  - TR[~:) 
( (v lv  in~novable) - TRU~) 
( (v lv  con t ro l s  tap] )  ~ ~ ! )  
( (v lv  r a t e )  -= 0.0) 
( (v lv  at  E) =- TRITE) 
( (g raspab le  vlv) :: TRtn) 
((m~xrate vlv) :- 1".5) 

Fig. 2. The State of the World model. 

Fig. 3. 

((Robby to  to  C a t  5.0) - TRUE) 
((Robby grasp bkt)  --- TRUE) 
((Robby go to  D at  5.0) --- TRUE) 
((Robby r e l e a s e  bkt)  - TRUE) 
((Rohby go to  E a t  S.0) -- TRUE) 
((Robby turn  v l v  a t  .324) --- TRUE) 
((Robby go to  D a t  5.0) = TRUE) 
((Robby grasp bkt )  ~ TRUE) 
((Robby go to  B at  5.0) - TRUE) 

Commands required for Robby to fill the bucket. 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

2.1-2.6 

2.7: 

S C E N A R I O  2: Robot grasps object 
((& 
I = robo t  g rasp  = obj)  
tg raspab le  *obj) 
( ~  (*robot  g rasp ing  *obj)) 
(*robot  at = l o c )  
(*obj at *loc)) 

( (*robot  g rasp  *obj)---* (*robot  g rasp ing  *obj))) 

" 'Some r o b o t  (is to) g rasp  some  object  
Tha t  object  is g r a spab le  
Tha t  r o b o t  is at some  loca t ion  
Tha t  objec t  is at that  l oca t i on  

As in (1) of  Sect ion 2, we accompl i sh  inser t ion  and de le t ion  by rep lac ing  the 
lef t -hand side of  the de le ted  c o m m a n d .  
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SCENARIO 3: Robot grasping immovable object is immovable 
.1 ((& 
.2 (=robot  grasping --obj) 
.3 (*robot movable) 
.4 (*obj immovable)) 

.5 ((*robot movable)---* (*robot immovable))) 

3. I-3.4 "Some robot (is) grasping some object 
That robot (is) movable 
That object is immovable" 

3.5 Insert and delete as before. 

Note that (Robby grasping bkt) was added to the SWM by Scenario 2. hence Scenario 
3 could only be initiated following Scenario 2's termination. 

SCENARIO 4: Robot releases object 
.1 ((& 
.2 (=robo t  releases =obj)  
.3 (*robot grasping *obj)) 

.4 (block 

.5 (~  (*robot releases *obj)) 

.6 ( 2  (*robot grasping *obj)))) 

4.1--4.5: "Some robot releases some object 
That robot (is) grasping that object" 

4.4-4.6: Delete release request (since release occurs instantaneously) and "'grasping 
state" from the world model. 

Once again we see that in this SWM Scenario 2 will precede Scenario 4. 

SCENARIO 5: Robot becomes movable 
.1 ((& 
.2 (=robot  immovable) 
.3 (*robot is a robot) 
.4 i ~(&(*robot grasping = obj) 

(*obj immovable)))) 

.5 l(*robot immovable) ~ (*robot movable))) 

5.1-5.3: "Some robot is immovable 
That robot is a robot" 

5.4: "'It is not the case that the robot is grasping some object and that object is 
immovable" 

5.5: robot becomes movable 

The "robot grasp" and "robot release" events manipulate the assertion (robot grasping 
obj). The events concerning the robot's movability are separate. The two groups of events 
communicated only through the "grasping" assertion. This design has two advantages: 

1. "Grasping" assertions could have other consequences, which would be implemented 
as other events. Changing the consequences is simply adding or removing events, not 
changing existing events. 

2. Each group of events deals with only a small portion of the world model. The events 
are less susceptible to changes in the world model. 

SCENARIO 6: Robot moves between connected points along directed path 
.1 ((& 
.2 (=robo t  go to = t o  at =speed) 
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.3 (*robot movable) 

.4 (*robot at =from) 

.5 *(0 < speed) 

.6 *(speed ~< (speed limit *robot)) 

.7 (path *from to *to)) 

.8 (block 

.9 (~  (*robot go to *to at *speed)) 

.10 ((*robot at * f rom)- ,  (*robot moving from *from to *to)) 

.11 (resume after ((path *from to *to)/speed)) 

.12 ((*robot moving from *from to *to)---* (*robot at *to)))) 

6.1-6.4: "Some robot is to go to some to-location at some speed 
That robot is movable 
That robot is at some from-location" 

6.5-6.6: "speed between 0 and maximum for robot" 
6.7: "There is a path from the from-location to the toqocation" 
6.9: Delete the command 
6.10: robot in motion; exact location cannot be determined 
6.11 event persists for as long as it takes for the robot to travel 
6.12: robot has arrived. 

Note that this scenario can be altered to allow movement along an undirected path by 
replacing (6.7) with 

.7a ( v (path *from to =$(*to - *to~ y) 

.7b (path *to to =$(*from - *from~ y)) 

.7c (path = x  to *y) 

and (6.11) by 

.11a (resume after ((path *x to *y)/speed)). 

S C E N A R I O  7. Grasped object moves with robot 
.1 ((& 
.2 (=robo t  moving =x  to =y) 
.3 (*robot grasping =object)) 

.4 (block 

.5 ((*object at '??)--*(*object moving from *x to *y)) 

.6 (resume after infinity unless (*robot moving from *x to *y)) 

.7 ((*object moving from *x to *y)--, (*object at *y)))) 

7.7-7.3: "Some robot (is) moving from some x to some y 
That robot is grasping some object" 

7.5: "That object is put into a state of motion." 

7.6: Continuation condition terminates when robot arrives 

(See Scenario 6). 
7.7: Object has arrived. 

This event is an "object watcher". 

S C E N A R I O  8: Robot moves between two points 
.1 ((& 
.2 (=robo t  go to = x  at =speed) 
.3 (*robot at =y)  
.4 (9  (path *y to *x)) 
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.5 

.6 

8.1-8.3 : 

8.4: 
8.5: 
8.6: 

(path *y to =z)) 
==_ 

(:(*robot go to *z at *speed = TRUE)) 

"Some robot go to some x at some speed 
That robot (is) at some y";- 
"No path from that y to that x'" 
"But there is a path from that y to some z" 
This is not a recursive call, but rather will bring about the initiation of 
Scenario 6 (assuming all other initiation conditions are satisfied). The original 
command remains; it will not involve this scenario while the robot is in 
motion to the neighboring point, but will again become viable once the robot 
has arrived, at a later point in model time. 

S C E N A R I O  9: Filling the bucket 
.1 ((& 
.2 (=  bucket is a bucket) 
.3 (*bucket at =loc) 
.4 ( = tap at *ioc) 
.5 (*tap is a tap) 
.6 (=  valve controls *tap) 
.7 *(0 < (*valve rate)) 
.8 *((content *bucket) < (capacity *bucket))) 

.9 (block 

.10 (:(water flowing from *tap to *bucket) = TRUE) 

.11 ((content *bucket) ~ f *(*(content *bucket) + (time - *time) 
x (*valve rate))) 

.12 (resume after ((capacity *bucket) 
- ( con ten t  *bucket)/(*valve rate)) 

unless (& (*bucket at *ioc) 
I *((*valve rate),--*(valve rate)))) 

.13 ( ~  (water flowing from *tap to *bucket)) 

.14 ((content *bucket) ,--- *(content *bucket)))) 

"Some bucket is a bucket 
That bucket is at some lo_.~cation 
Some tap is at that lo__~cation 
That ~ is a tap 
Some valve controls that tap" 
Valve is on; bucket is not full. 
Tell world water is flowing. 
The filling of the bucket represents a continuous process and is therefore 
represented by a formula. 
The continuation condition is also given by a formula. 

9.1-9.6' 

9.7-9.8" 
9.10: 
9.11: 

9.12: 

Note that the time dependence of this formula is derived from (content *bucketh which 
was itself made time-dependent in (9.11). 

NOTE" Scenario 6 could have been written similarly so that the robot 's location could 
always be determined by evaluating an equation; however, we choose for simplicity to 
"break contact" with the robot whenever it is between two designated points (i.e. the 
"robot moving. .  "command) .  A model was presented in Section 2 in which the location 
of the robot can be determined at any point in model time. 

The events as written permit several robots, buckets, taps and valves. Co6rdination 
may require additional events be added to the world model. 

c k  5 3 - 4  I) 
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(B) A discrete example 

As an additional example, we wish to describe the implementation of semaphores [10]. 
We create a type "semaphore" and indicate a variable of that type by a world model 
relation 

((sema is a semaphore) - TRUE). 

We also have the following two scenarios: 

tt& 
( v  =sem) 
(*sem is a semaphore)) 

(block 
(*sem ,-- *(*sem + 1)) 
( ~ ( v *sem)))) 

It& 
(P = sere) 
(*sere is a semaphore) 
*(0 < *sem)) 

(block 
(*sere *-- *(*sem - 1)) 
( ~ (P *sem)))). 

We can initialize as many semaphores as we like, at any time, by introducing into the 
world model relations of the form, 

(sema - 1) 
((sema is a semaphore) - TRUE) 
(semb - 1) 
((semb is a semaphore) - TRUE) 

Finally we must require that all scenarios placing P or V calls into the world model have 
the following form: 

(:(X somesemaphore) - TRUE) 
(resume unless (X somesemaphore)) 

(Where X represents P or v). 

6. C O N C L U S I O N S  

Let us first look at C O N C U R  as the language of a world modeling system. As a direct 
descendent of Hendrix's system, C O N C U R  implements its most important ideas. The 
Hendrix model, like its predecessors, divides the world into knowledge and dynamic 
processes--the "world model" and the events. C O N C U R  models both (as the SWM and 
event scenarios) as a part of a more general world model, the association list. The usual 
concept of "world model" is directly implemented as part of the syntax. 

Another syntactical feature is the  use of logical formulas, which make Hendrix's event 
characteristics--initiation and continuation condi t ions-eas i ly  expressible as conditions 
on the world model. Hendrix proposed two types of initiation conditions. Symbolic 
initiation conditions give assertions which must be present in the world, while numeric 
initiation conditions are Boolean expressions which must evaluate to TRUE. Both of 
these appear in C O N C U R  as instances of a single entity, the pattern, with the difference 
being that so-called numerical conditions are evaluated before matching. A single in- 
itiation condition pattern, the conjunction of each individual condition, is all that is 
required. 
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Events are invoked as demons of the world model. The various components of the 
initiation condition together become a "call" to the event when they are all present in the 
SWM. Events do not explicitly invoke each other. The result of an active event is changes 
in the world model, which can occur gradually over time, and includes possible changes 
in other scenarios since these are world model elements. Such "meta-events'" are a 
natural step towards evolutionary world models, but are syntactically equivalent to the 
scenarios they manipulate, and can themselves be subject to manipulation by similar 
entities. 

Event continuation can be governed by expressions similar to those which act to 
initiate them, and an event can, throughout its duration, model gradual continuous 
change. An invoked event can remain suspended over time and have various parameters 
appear to change gradually to the rest of the world. Event duration can be specified by a 
fixed amount of time, or by continuation conditions which are patterns which allow the 
event to continue so long as they are able to match the world model. 

An event can affect the world model only through use of four functions: insert (___-1, 
delete (~) ,  transform (---*), and assign (,---). Hendrix presents three categories of such 
effects, initial, gradual, and final, which alter the world at various stages in the event's 
lifetime. Initial and final effects are realized in C O N C U R  as expressions appearing before 
and after, respectively, the resume statement, while gradual effects are realized by for- 
mulas. 

An important advantage gained by using the C O N C U R  structure as the basis for a 
simulation system is the ability to produce different simulation techniques through the 
careful design of event scenarios and slight variations in the overall control structure. 
The latter consists only of a function which "patrols" the SWM attempting matches 
against initiation conditions. User interface is implemented with the operator console 
event, and can therefore be controlled by that event's initiation condition. 

Thus to obtain a clock pulse simulation using the significant event method [11], we 
model the clock as an SWM variable and have it updated by the patrol function follow- 
ing each scan. The user may be contacted at each point in time by having an operator 
initiation condition of TRUE;  or, more realistically, user interaction may be required 
only at specific points in time or as a result of the state of the model, and as we have seen 
such symbolic and/or numerical complexities can be naturally represented as initiation 
conditions. A quiescent period [11] for a variable in such a simulation corresponds to the 
(invisible) use of a formula to represent its value. It need not be parameterized by a time 
interval alone but may rely also on symbolic conditions to determine its duration. This 
allows for a stricter concept of"significance" and a less complex setting for introducing 
probabilistic models. Both quiescent and active periods are controlled by the same type 
of entity---event scenarios--with the latter corresponding to those events which are 
instantaneous (i.e. not possessing a resume), and as such no further distinction is made. 

Movement of the system in time is modeled by scenarios executing time dependent 
resume statements; model activity at any given moment can in fact be measured by the 
scenarios that are currently suspended by resume calls. A sophisticated scanning function 
can therefore employ a "next event" technique in advancing the model (as long as the 
operator event is taken into consideration) since a world model state can only change at 
those times when events can be initiated or become active. In addition it is also possible 
to utilize event scheduling [12] since events have the power to modify each other. 

The flexibility available for simulation is due entirely to an expanded notion of the 
event concept and CONCUR's  ability to deal with this generality. It is therefore reason- 
able to consider utilizing C O N C U R  to expand this concept beyond the realm of simula- 
tion and into the more common area of programming structures. In particular it pro- 
vides a natural setting in which the various muitiprogramming structures can be studied. 

C O N C U R  may actually turn out to be more powerful as a general modeling tool than 
it may appear from the robot simulation examples. For example, implementing the 
natural parallelism inherent in the simulation would actually make possible the modeling 
of the various constructs used in concurrency (such as semaphores [10], Hoare moni- 
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tors[13], serializers[14], fork and join[15], and communicating sequential pro- 
cesses [9]) as CONCUR scenarios and thus produce a unified setting for the study of 
these systems. An example such as the consumer-producer problem [10] can easily be 
visualized in the CONCUR framework. In fact, since interactions with the user can be 
modeled as the operator console event, and all programming can be interfaced through 
an invocation of this event (or metaevent, which is the same thing), all of the power of 
continuous change and event duration is thereby available to the user. 

The goal of CONCUR was to be a language expressing Hendrix's ideas about world 
modeling, but the result has been the development of a powerful syntax which is not a 
world modeling system, but rather a system in which world modeling can be done. It is 
in fact three different languages at once: (1) a pattern match interpretative system which 
erases many of the distinctions between variable and function which appear in LISP; (2) 
a continuous data-driven event initiator which can be used in realistic simulations: and 
(3) a general modeling tool for continuous and discrete concurrent processing systems. It 
may be that in this last area, in which the concept of event appears in its most interesting 
and exciting guise, that the full impact of CONCUR will be realized. 
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N a m e  

eval 
Mod. eval 

unlist 
Mod. unlist 

extend 

Mod. extend 

span 
bind 

universal 
unspecial 

free 
quote 
insert 

A P P E N D I X  I 
Summary of Notation 

Action 
Evaluates the pattern prefixed 
Evaluates the pattern matched 
Unlists the pattern prefixed 
Unlists the pattern matched 
Creates an extended operator that manipulates the value of the pattern 
prefixed 
Creates an extended operator that manipulates the value of the pattern 
matched 
Spans a sublist of the pattern matched 
Binds the value of the prefixed pattern to the value of the matched pattern 
Indicates universal consistent match with prefixed atom 
Indicates that the prefixed operator is to remain in the unlisted pattern 
An atom that matches any atomic pattern 
Quotes the prefixed pattern 
Adds an identifier-value pair to the association list 
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resume 

delete Removes an identifier-value pair from the association list 
transform Transforms one identifier into another identifier 

assign Transforms one value into another. Is the assignment operator, usually 
notated : = 

resume Resumes computation of the event at the specified time or condition. 

APPENDIX II 

CONCUR PATTERN MATCHER 

i. PRINCIPAL FUNCTIONS 

(DEFPROP MATCH 
(LAMBDA (PI P2) (PMATCH PI P2 (LIST WM NIL))) 

EXPR) 

(DEFPROP WORLDMATCH 
(LAMBDA (P) (MATCH P (CONS @V (CAR WM)))) 

EXPR) 

(DEFPROP PMATCH 
(LAMBDA (PI P2 R) 
(NCOND ((OR (NULL PI) (NULL P2)) NIL) 

((IFTYPE (LAMBDA (P) (ATOM P))) (RESULT ALMATCH)) 
( (IFTYPE (LAMBDA (P) (EQ (CAR P) @&))) (RESULT ANDM)) 
((IFTYPE (LAMBDA (P) (EQ (CAR P) @V))) (RESULT ORM)) 
((IFTYPE (LAMBDA (P) (EQ (CAR P) @\))) (RESULT NOTM)) 
((IFTYPE (LAMBDA (P) (OP (CAR P)))) (RESULT ELM)) 
(T (SMATCH (CAR PI) (CAR P2) (CDR PI) (CDR P2) R)))) 

EXPR) 

(DEFPROP SMATCH 
(LAMBDA (PI P2 Cl C2 R) 
(APPLY 
(FUNCTION 
(LAMBDA (BPI BSI CO1) 
(APPLY 
(FUNCTION 
(LAMBDA (BP2 BS2 CO2) 
(APPLY 
(FUNCTION 
(LAMBDA (TPI TS2 TSPI) 
(APPLY (FUNCTION (LAMBDA (TP2 TSI TSP2) (SPAN? TSPI TSP2))) 

(TRANSFER BP2)))) 
(TRANSFER BPI)))) 

(BIND? P2 CO1)))) 
(BIND? P1 @DIGON))) 

EXPR) 

(DEFPROP EMATCH 
(LAMBDA (EPI EP2 CONT R) 
( COND 
((OR (NULL EPI) (NULL EP2)) NIL) 
(T 
((LAMBDA (RI) (COND ((NULL RI) NIL) (T (CONT RI)))) 
(BS2 EP2 EPI (BSI EPI EP2 R)))))) 

EXPR) 
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2. SPAN CONTROL 

(DEFPROP SPAN? 
(LAMBDA (TI T2) 
(COND 
((AND (EQ T1 @SPANNER) (EQ T2 @SPANNER)) 
(DBLSPAN (NCONS TPI) (NCONS TP2) C1 C2)) 

((EQ T1 @SPANNER) (SPAN P2 (TRANSFORM TPI R) C2 C1 TS2 BS2 BSI R)) 
((EQ T2 @SPANNER) (SPAN PI (TRANSFORM TP2 R) C1 C2 TSI BSI BS2 R)) 
(T 
(EMATCH (APPLYOPS (TRANSFORM TPI R) TSI) 

(APPLYOPS (TRANSFORM TP2 R) TS2) 
CO2 
R ) ) ) )  

EXPR) 

(DEFPROP SPAN 
(LAMBDA (PI P2 C1 C2 TSI BSI BS2 R) 
((LABEL 

SPAN1 
(LAMBDA (PPI CI) 
(COND 
(((LAMBDA (PP) 

(AND2 (CONSISTENT (LIST @! P2) PP R) 
(EMATCH PP P2 @MOVEON DITTO))) 

(APPLYOPS PPI TSI))) 
((NULL CI) NIL) 
(T (SPAN1 (SNOC (CAR CI) PPI) (CDR CI)))))) 

(NCONS PI) 
cl)) 

EXPR) 

(DEFPROP DBLSPAN 
(LAMBDA (PI P2 C1 C2) 
(COND 
((AND2 (CONSISTENT (LIST @! PI) P2 R) 

(SPAN P2 (APPLYOPS P1 TSI) C2 C1 TS2 BS2 BSI DITTO))) 
((NULL CI) NIL) 
(T (DBLSPAN (SNOC (CAR CI) PI) P2 (CDR CI) C2)))) 

EXPR) 

3. FULL PATTERN PROCESSORS 

(DEFPROP ALMATCH 
(LAMBDA (PI P2 R) 
(COND 
((ATOM P2) (COND ((OR (EQ P2 @??) (EQ P1 P2)) R))) 
((EQ (CAR P2) @?) 
( (LAMBDA (P) 

(COND ((ATOM P) (CONSISTENT P2 P1 R)) 
( (OP (CAR P) ) (SNATCH P1 P2 NIL NIL R)))) 

(POP P2) ) ) 
((EQ (CAR P2) @&) (ANDM P2 P1 R)) 
((EQ (CAR P2) @V) (ORM P2 P1 R)) 
((EQ (CAR P2) @\) (NOTM P2 P1 R)) 
((OP (CAR P2) ) (SNATCH P1 P2 NIL NIL R) ))) 

EXPR) 
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(DEFPROP ANDM 
(LAMBDA (PI P2 R) 
( (LABEL 

ANDMATCH 
(LAMBDA (PI P2 R) 
( COND 
((NULL R) NIL) 
( (NULL PI) R) 
(T 
( (LABEL 

ANDOR 
(LAMBDA (P3) 
(COND ((NULL P3) NIL) 

((ANDMATCH (CDR PI) P2 (PMATCH (CAR Pl) (CAR P3) R))) 
(T (ANDOR (CDR P3) ))))) 

P2))))) 
(CDR PI) 
(COND ((OR (ATOM P2) (NEQ (CAR P2) @V)) (LIST P2)) 

(T (CDR P2) )) 
R)) 

EXPR) 

(DEFPROP ORM 
(LAMBDA (PI P2 R) 
((LABEL 

ORMATCH 
(LAMBDA (PI P2) 
(COND ((NULL PI) NIL) 

((PMATCH (CAR PI) P2 R)) 
(T (ORMATCH (CDR PI) P2 R))))) 

(CDR PI) 
P2)) 

EXPR) 

(DEFPROP ELM 
(LAMBDA (PI P2 R) (SNATCH P1 P2 NIL NIL R)) 

EXPR) 

(DEFPROP NOTM 
(LAMBDA (PI P2 R) (COND ((NOT (PMATCH (CADR Pl) P2 R))) 

EXPR) 

4. S-PATTERN PROCESSORS 

(DEFPROP BIND? 
(LAMBDA (P C) 
(COND 
((AND (NOT (ATOM P)) (EQ (CAR P) @=)) (LIST (POP P) @BIND @MOVEON)) 
(T (LIST P @NOBIND C)))) 

EXPR) 

(DEFPROP DIGON 
(LAMBDA (R) (NCOND ((PMATCH EPI EP2 R) (MOVEON DITTO)))) 

EXPR) 

(DEFPROP MOVEON 
(LAMBDA (R) 
(COND ((AND (NULL CI) (NULL C2)) R) (T (PMATCH C1C2 R)))) 

EXPR) 
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(DEFPROP TRANSFORM 
(LAMBDA (P R) 
(COND 
((ATOM P) P) 
((EQ (CAR P) @//) 
(CONS (CAR P) (PUSH (CADR P) (TRANSFORM (POP (CDR P)) R)))) 

((EQ (CAR P) @$) 
(APPLY (CAR P) 

(LIST (CADR P) (TRANSFORM (POP (CDDR P)) R) (CAR R)))) 
((PROP (CAR P)) 
(APPLY (CAR P) (LIST (TRANSFORM (POP P) R) (CAR R)))) 

((CMOP (CAR P)) NIL) 
(T P))) 

EXPR) 

(DEFPROP APPLYOPS 
(LAMBDA (P S) 
( (LABEL 
APPI 
(LAMBDA (PI SI) 
(COND 
((NULL SI) PI) 
((EQ (CAR SI) @$^) 
(APPI (APPLY (CAR SI) (LIST (CADR SI) P1 (CAR R))) (CDDDR SI))) 

(T (APPI (APPLY (CAR SI) (LIST P1 (CAR R))) (CDR SI)))))) 
( (LABEL 
APP2 
(LAMBDA (P2 $2) 
(COND 
((NULL $2) P2) 
((EQ (CAR $2) @$^) 
(APP2 
(MAPCAR 
@(LAMBDA (P) (APPLY (CAR $2) (LIST (CADR $2) P (CAR R)))) 
P2) 
(CDDDR $2))) 

(T 
(APP2 
(MAPCAR @ (LAMBDA (P) (APPLY (CAR $2) (LIST P (CAR R)))) P2) 
(CDR S2)))))) 

P 
(CAR S) ) 

(CDR S) ) ) 
EXPR) 

(DEFPROP TRANSFER 
(LAMBDA (P) 
((LABEL 

TRANS 
(LAMBDA (PI S) 
(COND 
((OR (ATOM PI) (NOT (OP (CAR PI))) (PROP (CAR PI))) 
(LIST P1 (CONS NIL S) @NOSPANNER)) 

((EQ (CAR PI) @!) 
(APPLY 
(FUNCTION 
(LAMBDA (P2 $2 SP) (LIST P2 (CONS (CDR $2) S) @SPANNER))) 

(TRANS (POP PI) NIL))) 
((EQ (CAR PI) @$A) 
(TRANS (POP (CDDR PI)) 

(APPEND (LIST (CAR PI) (CADR PI) (CADDR PI)) S))) 
(T (TRANS (POP PI) (CONS (CAR PI) S)))))) 

P 
NIL)) 

EXPR) 
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5. PATTERN OPERATORS 

(DEFPROP BIND 
(LAMBDA (Pl P2 R) 
(COND ((NULL R) NIL) (T (CONS (RECORD P1 P2 (CAR R )) (CDR R))))) 

EXPR) 

(DEFPROP NOBIND 
(LAMBDA (PI P2 R) R) 

EXPR) 

(DEFPROP * 
(LAMBDA (P R) 
(NCOND 
( (ATOM P) (NCOND ( (WORLDEVAL P R) (APPLY @: DITTO)) (T (EVAL P)))) 
((EQ (CAR P) @//) (PUSH @// (IGNORE (CADR P) (* (POP (CDR P)) R)))) 
((PROP (CAR P)) (* (APPLY (CAR P) (LIST (POP P) R)) R)) 
((CMOP (CAR P)) (IGNORE (CAR P) (* (POP P) R))) 
((EQ (CAR P) @QUOTE) (CADR P)) 
((WORLDEVAL P R) (APPLY @: DITTO)) 
((GET (CAR P) @EXPR) 
(APPLY (CAR P) (MAPCAR @ (LAMBDA (PI) (* P1 R)) (CDR P)) )) 

( (NULL (CDR P) ) (CAR P)) 
(T NIL))) 

EXPR) 

(DEFPROP : 
(LAMBDA (P R) 
(COND ((NULL R) NIL) 

((ATOM P) P) 
((EQ (CAR P) @QUOTE) (CADR P)) 
((EQ (CAR P) @//) (PUSH (CADR P) (: (POP (CDR P)) R))) 
((PROP (CAR P)) (APPLY (CAR P) (LIST (: (POP P) R) R))) 
((CMOP (CAR P)) (IGNORE (CAR P) (: (POP P) R))) 
(T (MAPCAR @(LAMBDA (P) (: P R)) P)))) 

EXPR) 

(DEFPROP $ 
(LAMBDA (E P R) 
(COND ((EQ (CAR E) @*) ($ (TRANSFORM E R) P R)) 

(T (: (CADR E) (CAR (PMATCH (CAR E) P (NCONS R))))))) 
EXPR) 

(DEFPROP *" 
(LAMBDA (P R) (* P R)) 

EXPR) 

(DEFPROP .A 
(LAMBDA (P R) (: P R)) 

EXPR) 

(DEFPROP S ̂ 
(LAMBDA (E P R) ($ E P R)) 

EXPR) 

(DEFPROP ? 
(LAMBDA (P R) (LIST @? P)) 

EXPR) 
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6. MATCH RECORD OPERATORS 

(DEFPROP CONSISTENT 
(LAMBDA (PI P2 R) 
(NCOND ((NULL R) NIL) 

((ASSQ Pl (CDR R)) (COND ((EQUAL DITTO P2) R))) 
(T (CONS (CAR R) (RECORD Pl P2 (CDR R)))))) 

EXPR) 

(DEFPROP RECORD 
(LAMBDA (PI P2 R) (CONS (CONS Pl (CAR R)) (CONS P2 (CDR R)))) 

EXPR) 

(DEFPROP ASSQ 
(LAMBDA (P R) 
((LABEL 

ASSQI 
(LAMBDA (RI R2) 
(COND ((NULL R1) NIL) 

((EQUAL (CAR RI) P) (CAR R2)) 
(T (ASSQI (CDR R2) (CDR R2)))))) 

(CAR R) 
(CDR R))) 

EXPR) 

7. DATA STRUCTURE OPERATORS 

(DEFPROP PROP 
(LAMBDA (A) (MEMBER A @(* : ? $ ) ) )  

EXPR) 

(DEFPROP CMOP 
(LAMBDA (A) (MEMBER A @(*" :^ .' = $^))) 

EXPR) 

(DEFPROP OP 
(LAMBDA (A) (OR (PROP A) (CMOP A))) 

EXPR) 

(DEFPROP PUSH 
(LAMBDA (A B) 
(COND ((OR (ATOM B) (NOT (OP (CAR B)))) (LIST A B)) (T (CONS A B)))) 

EXPR) 

(DEFPROP POP 
(LAMBDA (P) (COND ((OP (CADR P)) (CDR P)) (T (CADR P)))) 

8. PROGRAMMING TOOLS 

(DEFPROP LISTP 
(LAMBDA (A) (NOT (ATOM A))) 

EXPR) 

(DEFPROP SNOC 
(LAMBDA (A L) (APPEND L (LIST A))) 

EXPR) 
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(DEFPROP NCOND 
(LAMBDA (L E) 
(COND 
((NULL L) NIL) 
(T 
((LAMBDA (DITTO) 

(CORD (DITTO (EVAL 

( EVA L 
FEXPR) 

(CADAR L))) 
(T (EVAL (CONS @NCOND (CDR L)) 

(CAAR L) E))))) 
E)))) 

(DEFPROP IFTYPE 
(LAMBDA (F E) 
(COND ((EVAL (LIST 

((EVAL (LIST 
FEXPR) 

(CAR F) @Pl) E) (LIST Pl P2 R)) 
(CAR F) @P2) E) (LIST P2 Pl R)))) 

(DEFPROP RESULT 
(LAMBDA (F E) (CORD 

FEXPR) 
((NULL DITTO) NIL) (T (APPLY (CAR 

(DEFPROP AND2 
(LAMBDA (F E) 

FEXPR) 
(NCOND ((EVAL (CAR F) E) (EVAL (CADR F) 

(DEFPROP WORLDEVAL 
(LAMBDA (P R) 
(COND 
( ((LAMBDA (N) (CORD ((NUMBERP N) 
(T 
( (LABEL 
WORLD1 
(LAMBDA (RI) 
(NCOND 
((NULL (CAR RI)) NIL) 
((PMATCH P (CAAR Rl) 
(LIST (CADR RI) (CAR 

EXPR) 

(LIST N R)))) 

(T (WORLD1 (CONS 
R)))) 

(LIST R NIL)) 
DITTO))) 

(CDAR RI) (CDDR RI))))))) 

(DEFPROP IGNORE 
(LAMBDA (Pl P2) 
(CORD ((OR (ATOM P2) (NOT 

(T (CONS Pl P2)))) 
EXPR) 

(OP (CAR P2)))) (LIST Pl P2)) 

F) DITTO E)))) 

E ) ) ) )  

(TRANSFORM P R))) 
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