
Higher-Order and Symbolic Computation, 13, 57–63, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

From Macrogeneration to Syntactic Abstraction

R. KENT DYBVIG dyb@cs.indiana.edu
Indiana University, Computer Science Department, Lindley Hall 215, Bloomington, IN 47408, USA

Abstract. In his 1967 lecture notes, Christopher Strachey states that macrogenerators are useful as the only
alternative to rewriting the compiler when language extensions are needed. He also states, however, that they
deal inappropriately with programs as strings of symbols, ignoring their semantic content, and that they lead to
inconvenient syntax and often less transparent code. He concludes that a goal of language designers should be
to eliminate the need for macrogeneration. This article attempts to reconcile the contemporary view of syntactic
abstraction, which deals with programs at a higher level, with Strachey’s views on macrogeneration.

Syntactic abstraction has evolved to address the deficiencies of macrogeneration and has, to a large extent,
eliminated them. Syntactic abstractions are conveniently expressed, conveniently used, and usually lead to more
rather than less transparent code. While a worthwhile goal for language designers is toreducethe need for
macrogeneration through the inclusion of an appropriate set of built-in syntactic forms, this article concludes that
syntactic abstraction is a valuable tool for programmers to define language extensions that are not anticipated by
the language designer or are domain-specific and therefore not of sufficiently general use to be included in the
language core.

Keywords: macrogeneration, syntactic abstraction

1. Introduction

The views on language foundations that Christopher Strachey expresses in his 1967 lecture
notes, published elsewhere in this volume [7] remain impressively relevant today, over
thirty years later. An overriding theme of the notes is that foundations are deep semantic
issues, not superficial syntactic ones. Strachey levies rather harsh criticism on language
theoreticians of the day who emphasized syntax over semantics, claiming that some had
developed “an intense concern for the way in which things are written” and “a preoccupation
with the problems of syntax.” He claims that “the urgent task in programming languages
is to explore the field of semantic possibilities,” and he does precisely this throughout most
of the notes.

Strachey later returns to the subject of syntax while introducing the topic of macrogener-
ation. He advances the view that programming languages should deal with “abstract objects
(such as numbers or functions),” while pointing out that the conventional view is that “a
program is a symbol string (with the strong implication that it is nothing more).” He points
out that the conventional view leads directly to macrogenerators that manipulate programs
as symbol strings “without any regard to their semantic content.” He notes the correspon-
dence between macrogeneration and functional abstraction, anticipating the contemporary
view of macrogeneration as a mechanism forsyntactic abstraction[1].

In Strachey’s view, macrogeneration is useful for extending the power of the base lan-
guage, “although generally at the expense of syntactic convenience and often transparency.”



58 DYBVIG

He goes on to make the following classic statement regarding overuse of either abstraction
mechanism.

. . . it is possible by ingenuity and at the expense of clarity to do by a macrogenerator
almost everything that can be done by a function andvice versa. However the fact
that it is possible to push a pea up a mountain with your nose does not mean that this
is a sensible way of getting it there. Each of these techniques of language extension
should be used in its proper place.

With this statement, he seems to be advocating support for both macrogeneration (syntactic
abstraction) and functional abstraction in programming languages. Indeed, he goes on
to say that macrogeneration is useful as the only alternative to rewriting the compiler
when semantic extensions of a language are required. Yet he concludes his discussion of
macrogeneration with the statement that “a proper aim for programming language designers
[is] to try to make the use of macrogenerators wholly unnecessary.” This conclusion was
not drawn by someone who lacked understanding of or appreciation for macrogeneration;
quite the contrary, Strachey had only two years earlier published an article introducing an
early macrogeneration language, GPM [6].

This article attempts to reconcile the contemporary view of syntactic abstraction with
Strachey’s views on macrogeneration. Section 2 introduces syntactic abstraction and places
syntactic abstraction and macrogeneration in context. Section 3 discusses the role of syn-
tactic abstraction, including whether eliminating the need for syntactic abstraction is a
worthwhile goal. Section 4 summarizes the article and discusses what must be done to
make syntactic abstraction more widely supported.

2. Syntactic abstraction

Syntactic abstraction is the introduction of new syntactic forms that abstract over common
source-code patterns, usually with the aim of making programs more readable. Syntactic
abstraction is not synonymous with macrogeneration, which is themeansby which syntactic
abstractions are typically defined. One can conceive of other mechanisms for defining
syntactic abstractions, and macrogenerators are useful as a means for more than just syntactic
abstraction.

Traditional macrogenerators deal with programs as strings of symbols (often tokens such
as identifiers and numbers) without regard to the syntactic structure of the program. It is cer-
tainly true that this makes them inconvenient to use and often leads to less transparent code.
These problems are largely solved, however, by contemporary syntactic abstraction facil-
ities. In fact, these problems with traditional macrogenerators motivated the development
of contemporary syntactic abstraction.

Syntactic abstraction deals with program structures, such as expressions. More recent
syntactic abstraction mechanisms respect lexical scoping [1, 3] and support modular pro-
gramming [8]. They also provide convenient pattern-matching facilities that simplify the
definition of syntactic abstractions and make their definitions more readable and robust.



FROM MACROGENERATION TO SYNTACTIC ABSTRACTION 59

In a Scheme program, syntactic abstractions can appear anywhere an expression or defi-
nition can appear. (Scheme does not distinguish statements from expressions.) A syntactic
abstraction usually takes the form(keyword subform . . . ), wherekeyword is the identifier
that names the syntactic abstraction.1 The syntax of eachsubform varies from one syntactic
abstraction to another, just as for core syntactic forms.

New syntactic abstractions are implemented via transformation procedures, ortransform-
ers. Syntactic abstractions are expanded into core forms at the start of evaluation (before
compilation or interpretation) by a syntaxexpander. The expander runs once for each top-
level form in a program. If the expander encounters a syntactic abstraction, it invokes
the associated transformer to expand the syntactic abstraction, then repeats the expansion
process for the form returned by the transformer. If the expander encounters a core syntac-
tic form, it recursively processes the subforms, if any, and reconstructs the form from the
expanded subforms. The expander maintains a record of visible identifier bindings during
expansion in order to enforce lexical scoping. It augments this record when it encounters a
binding form, such as alambda expression or an instance of the syntactic abstraction defin-
ing form define-syntax. The expander consults this record when it encounters an identifier
reference.

Transformers receive a representation of the input form and return a similar representation
of the output form. The representation of forms is implementation-dependent but must
include sufficient information to determine the role of each free identifier contained within
a form, i.e., an encoding of the information about identifier bindings maintained by the
expander. This information must generally be associated with each identifier occurrence,
since over the course of a series of expansion steps, multiple like-named identifiers with
different bindings may wind up in the same form. Whether an identifier is constant (quoted),
free, or bound (and if bound, to what it is bound), can be determined only after the forms
surrounding the identifier have been reduced to core forms.

This entire mechanism is usually completely hidden from the programmer by the pattern-
matching language, although “low-level” facilities for defining transformers may expose
some or all of the mechanism. Consider Scheme’slet form, defined below using the now
standard “high-level” mechanism for defining syntactic abstractions in Scheme [2].

(define-syntax let
(syntax-rules ()

[(let ([x e] . . . ) body)
((lambda (x . . . ) body) e . . . )]))

The definition succinctly expresses the transformation oflet into a directlambda application,
following Landin’s correspondence principle [4]. It is easy to see from the input and output
patterns both the syntax oflet and the code into whichlet expressions expand. Scoping
relationships are clear, with the bound variablesx . . . visible within body but note . . .
and the free reference tolambda scoped where thelet definition occurs. The importance of
preserving scoping relationships is underscored by the definition ofor.



60 DYBVIG

(define-syntax or
(syntax-rules ()

[(or e1 e2 )
(let ([t e1])

(if t t e2))]))

Here there are three introduced identifiers:let, t, andif. The binding fort is visible only
within the code introduced by the syntactic abstraction; in particular, it is not visible within
the code represented bye2, where it would otherwise capture free references tot within e2.
Similarly, the free references to the keywordslet andif cannot be captured by local bindings
in the context of anor expression. Thus, the expression

(let ((if #f))
(let ([t ’okay])

(or if t)))

properly evaluates tookay, in spite of the local bindings for and references toif2 and t.
The expander preserves scoping relationships in the output by renaming bound variables,
at least in effect. For example, the expression above expands into the equivalent of

((lambda (if1)
((lambda (t1)

((lambda (t2)
(if t2 t2 t1))

if1))
’okay))

#f)

in which bound variables have been consistently renamed as indicated by the subscripts.

3. The role of syntactic abstraction

Should a goal of language design be to eliminate the need for syntactic abstraction? Cer-
tainly, a goal should be toreducethe need for syntactic abstraction through the inclusion of
an appropriate set of built-in syntactic forms. Programmers should not be required to define
syntactic abstractions for common program constructs such aslet andor. Said another way,
the language designer should not use the inclusion of syntactic abstraction facilities in a
language as an excuse for leaving out syntactic forms that are commonly used and deserve
status as primitive constructs. Of course, the implementor should feel free to code such
forms as syntactic abstractions to be included in a standard library, much as is done for
many standard functions.

Experience has shown, however, that syntactic abstraction remains useful for extending
the language in ways not anticipated by the language designer. Perhaps equally important,
syntactic abstraction is useful for extending the language in ways anticipated butrejected



FROM MACROGENERATION TO SYNTACTIC ABSTRACTION 61

by the language designer. This is because many useful syntactic abstractions are domain-
specific, i.e., useful only for a particular application or kind of application, and therefore
not sufficiently common as to merit inclusion in the language.

For example,Chez Scheme’s lexical analyzer is expressed as a state machine implemented
by a set of mutually recursive procedures. Each state is coded using thestate-case syntactic
form, a variant ofcase tailored to use in the domain of lexical analysis. While the definition
of state-case is too involved to present here, the following code fragment demonstrates how
state-case might be used to define the state that reads Scheme comments, once the initial
semicolon has been read.

(define (rd-token-comment port)
(let ([c (read-char port)])

(state-case c
[eof (rd-token port)]
[(#\newline) (rd-token port)]
[else (rd-token-comment port)])))

Thestate-case syntax requires the inclusion ofeof (end of file) andelse cases, resulting in
more reliable code. Although not shown in the example, it also supports character ranges,
such as(#\a − #\z), a representing all of the characters from “a” to “z.” The use ofstate-
case in the lexical analyzer makes the code readable and reliable. In fact, it makes coding
the reader in terms of mutually recursive procedures viable, which in turn results in the
best possible performance3 and more flexibility than the alternative strategy of using a lexer
generator.

The state-case form is clearly useful, yet building it into the language would not be
sensible. A language incorporating all useful syntactic forms would be unwieldy to the
point of worthlessness.

4. Conclusion

In his lecture notes, Strachey elaborated several deficiencies of macrogeneration as a mecha-
nism for language extension. Syntactic abstraction has evolved to address such deficiencies
and has, to a large extent, eliminated them. Syntactic abstractions are conveniently ex-
pressed, conveniently used, and usually lead to more rather than less transparent source
code. At the same time, a wide variety of uses for syntactic abstraction have appeared
that go beyond what one would reasonably want to account for in a language definition.
Languages should include a proven set of built-in syntactic forms along with syntactic
abstraction facilities permitting the programmer to abstract over domain-specific syntac-
tic patterns. This will lead to more readable and more reliable code without unnecessary
language bloat and will free the language designer to concentrate less on the syntax of a
language and more on its semantics.

Syntactic abstraction has become very popular in the Scheme community, but is much
less so outside of that community. Mechanisms that provide limited forms of syntactic
abstraction exist in other languages, e.g., the templates of C++ and the generics of Ada.



62 DYBVIG

Yet general-purpose syntactic abstraction has not caught on more widely. In part, this is
because it has been unclear how to extend it cleanly to the algebraic syntax used by most
other languages. The Dylan language design addresses this issue [5] with a rewrite system
that permits incorporation of new productions into the Dylan grammar. Dylan’s syntax
was designed to support this mechanism, however, so extending the mechanism to other
algebraic languages may not be straightforward.

Integrating syntactic abstraction with static typing is also problematic. In the presence
of arbitrary user-defined transformers, it is impossible to perform type inference (or type
checking) prior to expansion of syntactic abstractions. An obvious alternative is to perform
type inference after syntactic expansion. This is straightforward but further complicates the
already difficult problem of identifying the source of type errors in a program. Another
possibility is to require or allow type declarations to be affixed to the definitions of syntactic
abstractions and to perform type inference twice: once before syntactic expansion and once
after. Failure to type before expansion would be an indication of an error in the body of the
program, while failure to type after expansion would be an indication of an error in one of
the syntactic abstraction definitions. This approach is complicated by syntactic abstractions
that themselves expand into definitions of other syntactic abstractions. To support them, it
may be necessary to perform multiple expansion-inference steps. The best solution may
be to tightly integrate syntactic expansion with type inference, although the complexity of
both may make this a difficult task.

Strachey felt programming languages should deal with abstract objects rather than pro-
gram text. While syntactic abstraction deals with programs at a higher level than macro-
generation, it by nature still deals with program structure rather than abstract objects. In
spite of this, one can only hope that Strachey would view syntactic abstraction as a step in
the right direction and as a more appropriate tool for language extension than string-based
macrogeneration.

Acknowledgments

Discussions with Benjamin Pierce and Oscar Waddell led to a better understanding of
the issues involved in combining syntactic abstraction and static typing. Comments from
Olivier Danvy, Andrzej Filinski, Bernd Grobauer, Oscar Waddell, David Wise, and Zhe
Yang helped improve the presentation.

Notes

1. An “identifier” is a syntactic entity that may denote a program variable, keyword, or constant symbol.
2. The reader may be surprised that the identifierif can be bound in this manner. Scheme has no reserved words;

instead, the role of each identifier is determined by its current visible binding.
3. Because the recursive calls are all tail calls and the states share a set of common arguments, the recursive calls

reduce to unconditional jumps.

References

1. Dybvig, R.K., Hieb, R., and Bruggeman, C. Syntactic abstraction in Scheme.Lisp and Symbolic Computation
5(4) (1993) 295–326.



FROM MACROGENERATION TO SYNTACTIC ABSTRACTION 63

2. Kelsey, R., Clinger, W., and Rees, J. (Eds). Revised5 report on the algorithmic language Scheme.Higher-Order
and Symbolic Computation11(1) (1998) 7–105. Also appears inACM SIGPLAN Notices33(9) (1998).

3. Kohlbecker, E., Friedman, D.P., Felleisen, M., and Duba, B. Hygienic macro expansion. InProceedings of the
1986 ACM Conference on Lisp and Functional Programming, 1986, pp. 151–161.

4. Landin, P.J. The mechanical evaluation of expressions.Computer Journal6 (1964) 308–320.
5. Shalit, A.The Dylan Reference Manual. Addison Wesley Longman, 1996.
6. Strachey, C. A general purpose macrogenerator.Computer Journal8(3) (1965) 225–241.
7. Strachey, C. Fundamental concepts in programming languages.Higher Order and Symbolic Computing13(1/2)

(2000) 11–49.
8. Waddell, O. and Dybvig, R.K. Extending the scope of syntactic abstraction. InConference Record of the Twenty

Sixth Annual ACM Symposium on Principles of Programming Languages, January 1999, pp. 203–213.


