
Yin Wang

“See that bird? It's a Spencer's warbler. Well, in
Italian, it's a Chutto Lapittida. In Portuguese, it's
a Bom da Peida. In Chinese it's a Chung-Long-
tah, and in Japanese it's a Katano Tekeda. You
can know the name of the bird in all the
languages of the world, but when you're
finished, you'll know absolutely nothing
whatever about the bird. You'll only know about
humans in different places, and what they call
the bird. So let's look at the birds and see what
it's doing -- that's what counts!”

-- Richard Feynman, The Making of a Scientist

Let’s look at the register allocator and see what it’s doing …

Let’s look at the register allocator and see what it’s doing …

Let’s look at the register allocator and see what it’s doing …

 Why do we need
names in programs?

 Why do processors
have registers?

 So, are registers
analogous to names?

 Why do we need
names in programs?

 Because we want to
refer to values.

 Why do processors
have registers?

 So, are registers
analogous to names?

 Why do we need
names in programs?

 Because we want to
refer to values.

 Why do processors
have registers?

 Because its circuits
need to refer to …
values.

 So, are registers
analogous to names?

 Why do we need
names in programs?

 Because we want to
refer to values.

 Why do processors
have registers?

 Because its circuits
need to refer to …
values.

 So, are registers
analogous to names?

 Yes. They are of the
same essence, holders
of values.

 Can we use registers to
stand for names?

 Can ALL names live in
registers?

 Can I say that names
can live in registers?

 Can we use registers to
stand for names?

 Yes. Because the
values of names can
also live in registers.

 Can ALL names live in
registers?

 Can I say that names
can live in registers?

 Can we use registers to
stand for names?

 Yes. Because the
values of names can
also live in registers.

 Can ALL names live in
registers?

 Can I say that names
can live in registers?

 You may say so,
although it is their
values that are living.

 Can we use registers to
stand for names?

 Yes. Because the
values of names can
also live in registers.

 Can ALL names live in
registers?

 Not necessarily.
Processors have very few
registers, because they
are expensive.

 Can I say that names
can live in registers?

 You may say so,
although it is their
values that are living.

 Can processors do
arithmetic on the
stack?

 Where do the rest of
the names live?

 What is the stack?

 Can processors do
arithmetic on the
stack?

 Where do the rest of
the names live?

 The stack.

 What is the stack?

 Can processors do
arithmetic on the
stack?

 Where do the rest of
the names live?

 The stack.

 What is the stack?  A large and cheap off-
processor space where
names can live.

 Can processors do
arithmetic on the
stack?

 No. They have to load
the operands into
registers first.

 Where do the rest of
the names live?

 The stack.

 What is the stack?  A large and cheap off-
processor space where
names can live.

The Life of Names

A name lives either in an
expensive register or a cheap
stack slot.

 What is register
allocation?

 Does it take a long time
to move value between
register and stack?

 What should be the
goal of register
allocation then?

 What is register
allocation?

 The process of
deciding where and
when each name lives.

 Does it take a long time
to move value between
register and stack?

 What should be the
goal of register
allocation then?

 What is register
allocation?

 The process of
deciding where and
when each name lives.

 Does it take a long time
to move value between
register and stack?

 Yes. It is a major cost
of time.

 What should be the
goal of register
allocation then?

 What is register
allocation?

 The process of
deciding where and
when each name lives.

 Does it take a long time
to move value between
register and stack?

 Yes. It is a major cost
of time.

 What should be the
goal of register
allocation then?

 To minimize register-
stack traffic.

 What is a model?

 Can you show me an
example model?

 Does it keep track of
register and stack
separately?

 What is a model?  It is a table which tells
you where each name
lives.

 Can you show me an
example model?

 Does it keep track of
register and stack
separately?

 What is a model?  It is a table which tells
you where each name
lives.

 Can you show me an
example model?

 Does it keep track of
register and stack
separately?

 Yes, for maximum
accuracy.

 What is a model?  It is a table which tells
you where each name
lives.

 Can you show me an
example model?

 There you are!
x : r1
y : r2
z : r3

u : fv0
v : fv1

 Does it keep track of
register and stack
separately?

 Yes, for maximum
accuracy.

u v

sp

y zx

r1 r2 r3 Stack

x : r1
y : r2
z : r3

u : fv0
v : fv1

model

physical machine

r4 r5 r6

 How do models relate
to each other?

 Models relate to each
other according to some
inference rules, similar
to that of Hoare Logic.

w := v * 5

w : r1
y : r2
v : r3

v : fv0
x : fv1

x : r1
y : r2

v : fv0“premodel”

“postmodel”

as Hoare-triple-style notation:

w := 1

w : r1
y : r2

y : r2“premodel”

“postmodel”

 When are names
created?

 When they are
assigned a value.

 Will names ever die?

 Where does x die?

x := 1
y := x + 1
z := y * 2
END

 How do we signify
where a variable dies?

 Will names ever die?  Yes. When we no
longer refer to them.

 Where does x die?

x := 1
y := x + 1
z := y * 2
END

 How do we signify
where a variable dies?

 Will names ever die?  Yes. When we no
longer refer to them.

 Where does x die?  After x is added with 1,
but before assigning to
y. I mean, here:

y := x + 1

x := 1
y := x + 1
z := y * 2
END

 How do we signify
where a variable dies?

 Will names ever die?  Yes. When we no
longer refer to them.

 Where does x die?  After x is added with 1,
but before assigning to
y. I mean, here:

y := x + 1

x := 1
y := x + 1
z := y * 2
END

 How do we signify
where a variable dies?

 We mark their endings,
like:

y := x + 1, {x}

z := x + 1, {x}

z : r1
y : r2

v : fv0

x : r1
y : r2

v : fv0
x : fv1

“premodel”

“postmodel”

 What happens to a model
when a name dies?

 It is deleted from the
model (for both register
and stack parts).

z := x + 1, {x}

z : r1
y : r2

v : fv0

x : r1
y : r2

v : fv0
x : fv1

“premodel”

“postmodel”

 What happens to a model
when a name dies?

 It is deleted from the
model (for both register
and stack parts).

But actually, the deletion
happens here!

z := x + 1, {x}

z : r1
y : r2

v : fv0

x : r1
y : r2

v : fv0
x : fv1

y : r2 v : fv0

premodel

midmodel

postmodel

z :=

x + 1, {x}

model transformer
for “z := x + 1”

 Why is there a
midmodel?

 Because the instruction
must takes at lest two
cycles to finish. x is already
dead in the second cycle.

+
x

1

z

clock signal

Time

x alivex dead

z := x + 1, {x}

 Why is there a
midmodel?

 Because the instruction
must takes at lest two
cycles to finish. x is already
dead in the second cycle.

+
x

1

z

clock signal

Time

x alivex dead
This is why z can
reuse the register
of x.

z := x + 1, {x}

 UIL (unified intermediate
language) after removing
complex operands
(remove-complex-opera*)

 Procedure definitions
 Sequencing
 Arithmetic
 Assignments
 Memory references
 Branching
 Calls (with trivial arguments)

x := 1
y := x + 1
z := y * 2
END

x := 1
y := x + 1
z := y * 2
END

x := 1, {}
y := x + 1, {x}
z := y * 2, {y}
END, {z}

Backward scan
for marking
deaths of names

x := 1
y := x + 1
z := y * 2
END

x := 1, {}
y := x + 1, {x}
z := y * 2, {y}
END, {z}

Backward scan
for marking
deaths of names

Forward model
transformation
and rewriting

r1 := 1
r1 := r1 + 1
r1 := r1 * 2
END

impose-calling-conventions
uncover-frame-conflict
pre-assign-frame
assign-new-frame
finalize-frame-locations
uncover-register-conflict
assign-registers
assign-frame
finalize-locations

mark-deaths
allocate

 Nine passes of nanopass compiler reduced to two.

 What is the model at
the beginning of a
procedure?

 It is pre-determined by
calling conventions.

f (x, y, z) =

u := x + 1
v := u * 2
z / v

$ret : r0
x : r1
y : r2

z : fv0

Suppose r1, r2 are parameter registers, r0 is
return address register. z has to be put into
stack.

 What is $ret in the
initial model?

 It is the return address
set by the caller.

 What is the essence of
it?

 It is the continuation “k” in a
CPSed functional program:

f x y z k =
k (z / ((x + 1) * 2))

 Save
 Load
 Shuffle

Regs

SAVE

Stack

LOAD

SHUFFLE

sp

 Save
 Load
 Shuffle

Regs

SAVE

Stack

LOAD

SHUFFLE

sp

 Transform the input model into new ones

 Save
 Load
 Shuffle

Regs

SAVE

Stack

LOAD

SHUFFLE

sp

 Transform the input model into new ones
 May emit instructions for loads and stores

x : r1
y : r2

z : fv0

SAVE({x, y})

x : fv1
y : fv2
z : fv0

x : r1
y : r2
u : r3

z : fv0

LOAD({x, z})

x : r1
y : r2
z : r3

z : fv0
u : fv1

fv1 <- x
fv2 <- y

fv1 <- u
r3 <- z

 What is the essence of
the inserted instructions
from SAVE and LOAD?

 They are actually doing
“live range splitting”
on-the-fly.

 What is the difference
between splitting and
spilling?

 Spilling puts the whole life
span of a name in stack.
Splitting only puts part of
its life span in stack.

 What if different registers are
assigned to the same
variables in different
branches

 We need to shuffle
them for consistency.

if x < 5

y := 1
z : = 2

z := 1
y : = 2

w := y+1

x : r1 x : r1

x : r1
y : r2
z : r3

x : r1
z : r2
y : r3

Need shuffle:
r2 <-> r3

 Shuffling may happen at
 Procedure calls
 Join points

 Shuffling is like permutation

 Break permutation into cycles (or paths):

 Generate code to move variables in cycles:

Mostly graph coloring (extensions) and linear scan (extensions).

 A variable either lives in a register throughout its
life time, or lives in a stack location throughout its
life time

 A variable either lives in a register throughout its
life time, or lives in a stack location throughout its
life time

 A variable lives in the same register or stack
location throughout its life time

 A variable either lives in a register throughout its life
time, or lives in a stack location throughout its life time

 A variable lives in the same register or stack location
throughout its life time

 But actually,
 A variable may live in a register, move to a stack location,

and then move back to a (possibly different) register.
 A variable may live in both a register AND a stack location.

 A variable either lives in a register throughout its life
time, or lives in a stack location throughout its life time

 A variable lives in the same register or stack location
throughout its life time

 But actually,
 A variable may live in a register, move to a stack location,

and then move back to a (possibly different) register.
 A variable may live in both a register AND a stack location.

 Graph Coloring doesn’t capture this kind of semantics
and may generate inefficient code.

 Goal: minimizing the number of allocated
registers. (Doesn’t aim at reducing memory
traffic!)

 Goal: minimizing the number of allocated
registers. (Doesn’t aim at reducing memory
traffic!)

 Produces good code only if no spilling
happens. Otherwise no guarantee about
memory traffic

 Goal: minimizing the number of allocated
registers. (Doesn’t aim at reducing memory
traffic!)

 Produces good code only if no spilling
happens. Otherwise no guarantee about
memory traffic

 Spilled variables may introduce unpredictably
many memory references

 Still need backtracking for “optimal”
allocation because of join points

 Maybe reducible to SAT (thus a graph), but a
much more complex graph (may contain
continuations of the allocator)

 Needs further investigation

 It never spills, but linear scan spills.
 Does “online live range splitting”
 existed partly in extended linear scan
 usually done in a separate pass and thus offline (as

in LLVM option “pre-alloc-split”)

 The model transformer semantics may be
used to simplify formal verification of register
allocation

 Formerly this is done by dynamic “validation”
and not static verification (as in CompCert)

 Handle instructions with memory operands
and other irregularities

 Limited form of backtracking
 Callee-save registers and link-time

optimization
 An industrial-strength compiler backend

eventually

Thanks to R. Kent Dybvig, Andy Keep, Oleg
Kiselyov for helpful comments and discussions.

	The Little Register Allocator
	The name of the game
	The game of the name
	The game of the name
	The game of the name
	Names, Registers, Stack
	Names, Registers, Stack
	Names, Registers, Stack
	Names, Registers, Stack
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Register Allocation
	Register Allocation
	Register Allocation
	Register Allocation
	Model
	Model
	Model
	Model
	Model and Reality
	Model Transformer Semantics
	Births of Names
	Deaths of Names
	Deaths of Names
	Deaths of Names
	Deaths of Names
	Deletion in Model
	Deletion in Model
	Midmodel
	Why midmodel?
	Why midmodel?
	The Bigger Picture
	Input Language
	Two Pass Allocation
	Two Pass Allocation
	Two Pass Allocation
	Reduction in compiler passes
	Starting Model
	Slide Number 46
	Primitive Model Transformers
	Primitive Model Transformers
	Primitive Model Transformers
	Examples
	Slide Number 51
	Branching
	Slide Number 53
	Shuffling
	Handling Shuffling
	Related Work
	Assumptions of Graph Coloring
	Assumptions of Graph Coloring
	Assumptions of Graph Coloring
	Assumptions of Graph Coloring
	Assumptions of Graph Coloring
	Goal of Graph Coloring
	Goal of Graph Coloring
	Goal of Graph Coloring
	Goal of Graph Coloring
	Is it still Graph Coloring?
	Compare with Linear Scan
	Implications to Verified Compilation
	TODOs
	Acknowledgements
	Questions?
	Thank you!
	Thank you!

