The Little Register Allocator

Yin Wang

The name of the game

“See that bird? It's a Spencer's warbler. Well, in
ltalian, it's a Chutto Lapittida. In Portuguese, it's
a Bom da Peida. In Chinese it's a Chung-Long-
tah, and in Japanese it's a Katano Tekeda. You
can know the name of the bird in all the
languages of the world, but when you're
finished, you'll know absolutely nothing
whatever about the bird. You'll only know about
humans in different places, and what they call
the bird. So let's look at the birds and see what
it's doing -- that's what counts!”

-- Richard Feynman, The Making of a Scientist

The game of the name

Let’s look at the register allocator and see what it’s doing ...

(=]

Program Live Ranges Registers

(T = R P

Xy X, Yy Y, Zy Z,

Compilers

Principles, Techniques,
< and Tools

EMNGINEERING
A

COMPILER

/\Im-(l\/./\im/{w_
RaviSethi ¢ ol g 3

vffrey y
Jeffrey D. Ullman g ._4!
e —1

.‘{_-"mls : 1‘i
~
i
|

The game of the name

Let’s look at the register allocator and see what it’s doing ...

The game of the name

Let’s look at the register allocator and see what it’s doing ...

Names, Registers, Stack

Why do we need
names in programs?

Why do processors
have registers?

So, are registers
analogous to names?

Names, Registers, Stack

Why do we need Because we want to
names in programs? refer to values.
Why do processors

have registers?

So, are registers
analogous to names?

Names, Registers, Stack

Why do we need Because we want to

names in programs? refer to values.

Why do processors Because its circuits

have registers? need to referto ...
values.

So, are registers
analogous to names?

Names, Registers, Stack

Why do we need Because we want to

names in programs? refer to values.

Why do processors Because Its circuits

have registers? need to referto ...
values.

So, are registers Yes. They are of the

analogous to names? same essence, holders

of values.

Can we use registers to
stand for names?

Can | say that names
can live in registers?

Can ALL names live in
registers?

Can we use registers to
stand for names?

Can | say that names
can live in registers?

Can ALL names live in
registers?

Yes. Because the
values of names can
also live in registers.

Can we use registers to
stand for names?

Can | say that names
can live in registers?

Can ALL names live in
registers?

Yes. Because the
values of names can
also live in registers.

You may say so,
although it is their
values that are living.

Can we use registers to
stand for names?

Can | say that names
can live in registers?

Can ALL names live in
registers?

Yes. Because the
values of names can
also live in registers.

You may say so,
although it is their
values that are living.

Not necessarily.
Processors have very few
registers, because they
are expensive.

Where do the rest of
the names live?

What is the stack?

Can processors do
arithmetic on the
stack?

Where do the rest of The stack.
the names live?

What is the stack?

Can processors do
arithmetic on the
stack?

Where do the rest of The stack.
the names live?

What is the stack? A large and cheap off-
processor space where

names can live.

Can processors do
arithmetic on the
stack?

Where do the rest of The stack.
the names live?

What is the stack? A large and cheap off-
processor space where

names can live.

Can processors do No. They have to load

arithmetic on the the operands into
stack? registers first.

The Life of Names

A name lives eitherin an
expensive register or a cheap
stack slot.

Register Allocation

What is register
allocation?

Does it take a long time
to move value between
register and stack?

What should be the
goal of register
allocation then?

Register Allocation

What is register The process of
allocation? deciding where and
when each name lives.

Does it take a long time
to move value between
register and stack?

What should be the
goal of register
allocation then?

Register Allocation

What is register The process of
allocation? deciding where and
when each name lives.

Does it take a long time Yes. It is a major cost
to move value between of time.
register and stack?

What should be the
goal of register
allocation then?

Register Allocation

What is register
allocation?

Does it take a long time
to move value between
register and stack?

What should be the
goal of register
allocation then?

The process of
deciding where and
when each name lives.

Yes. It is a major cost

of time.

To minimize register-
stack traffic.

What is a model?

Does it keep track of
register and stack
separately?

Can you show me an
example model?

What is a model?

Does it keep track of
register and stack
separately?

Can you show me an
example model?

It is a table which tells
you where each name
lives.

What is a model?

Does it keep track of
register and stack
separately?

Can you show me an
example model?

It is a table which tells
you where each name
lives.

Yes, for maximum
accuracy.

What is a model?

Does it keep track of
register and stack
separately?

Can you show me an
example model?

It is a table which tells
you where each name
lives.

Yes, for maximum
accuracy.

There you are!

Model and Reality

ri

r

model
X:ri
s u:fvo
Y- v:fva
Z:r3

physical machine

r2 r3 Stack
y i

r5 ré
Sp

Model Transformer Semantics

How do models relate Models relate to each
other according to some

to each other? inference rules, similar
to that of Hoare Logjic.

-
as Hoare-triple-style notation:

{(z:r1, y:r2)(v:fvo)}
W:=V*g w:=v%*5
{(w:ry, y: 1o, virs)(v: fvg, z: fvy)}

“postmodel”

Births of Names

When are names When they are
created? assigned a value.
“premodel” y:r2 D

W:=1

“postmodel” WS e
y :r2

Deaths of Names

Will names ever die?

Where does x die?

X:=1
y:i=X+1
z:=y*2
END

How do we signify
where a variable dies?

Deaths of Names

Will names ever die? Yes. When we no
longer refer to them.

Where does x die?

X:=1
y:i=X+1
z:=y*2
END

How do we signify
where a variable dies?

Deaths of Names

Will names ever die? Yes. When we no
longer refer to them.

Where does x die? After x is added with 1,
but before assigning to
y. I mean, here:

X:=1
y:i=X+1
z:=y*2

=D yi=X+1

How do we signify
where a variable dies?

Deaths of Names

Will names ever die? Yes. When we no
longer refer to them.

Where does x die? After x is added with 1,
but before assigning to

= y. | mean, here:

y:i=X+1

z:=y*2

=D yi=X+1
How do we signify We mark their endings,
where a variable dies? like:

y:i=X+1, {X}

Deletion in Model

What happens to a model It is deleted from the
when a name dies? model (for both register
and stack parts).

“premodel” S e
y:r2
{(z:r1,y:r2)(v: fvg, z:fv)}
zi=zx+1,{z}
Z:=X+1, {x} {(E:T‘l, y: T‘g)(’t’: fV[j)}

“postmodel”

Deletion in Model

What happens to a model It is deleted from the
when a name dies? model (for both register
and stack parts).

“premodel” X
y:r2

{(z:r1,y:r2)(v: fvg, z:fv)}
Z:i=x+ 1': {"T}
z:=X+1, {X} {(E:T‘l, y: T‘g)(’t’: fV[j)}

z:r1
y :r2

“postmodel”

Midmodel

X:ri
premodel model transformer
y : r2 A\ n
for“z:=x+1
midmodel Z:=ix + 1, {x}
postmodel z:ri

Why midmodel?

: Because the instruction
W.hy is there a must takes at lest two
midmodel? cycles to finish. x is already

dead in the second cycle.

x dead xalive

1 Z:=iX + 1, {x}

clock signal

Time

Why midmodel?

: Because the instruction
W.hy is there a must takes at lest two
midmodel? cycles to finish. x is already

dead in the second cycle.

This is why z can

x dead xalive reuse the register
of x.
X
2 +
1 Z:=iX + 1, {x}
clock signal

Time

The Bigger Picture

Input Language

UIL (unified intermediate
language) after removing
complex operands
(remove-complex-opera*)

Procedure definitions P — fidzyz.Sx*
Sequencing S — s1;5«%
Arithmetic T
Assignments rTe—y+z
Memory references T —|y+ 2]
Branching [z +7y] —2
Calls (with trivial arguments) £+ then S x else S
flz,y,2)

Two Pass Allocation

X:=1
y:i=X+1
Z:=y*2
END

Two Pass Allocation

¥ =1 X:=1, {}
yi=X+1 y:i=XxX+1, {X}
z:=y %2 Z:=y* 2,1y}
END END, {z}

Backward scan
for marking
deaths of names

Two Pass Allocation

m N < X

Z ..

< X B

O

* +

N PR

X:=1, {}
y:i=XxX+1, {X}
2=y * 2, fy}
END, {z}

Backward scan
for marking
deaths of names

Forward model
transformation
and rewriting

ri:=1
ri:=ri+1
ri:=ri1*2
END

Reduction in compiler passes

Nine passes of nanopass compiler reduced to two.

impose-calling-conventions
uncover-frame-conflict
pre-assign-frame

assign-new-frame
finalize-frame-locations mark-deaths
uncover-register-conflict allocate

assign-registers
assign-frame
finalize-locations

Starting Model

What is the model at It is pre-determined by
the beginning of a calling conventions.
procedure?
Fix y’_ 2) =), $ret: ro
U=x4+1 x :r1 | z:fvo
Vizu*2 yooir
z/v

Suppose r1, r2 are parameter registers, r0 is
return address register. z has to be put into
stack.

What is $ret in the It is the return address
initial model? set by the caller.

It is the continuation “k” in a

What is the essence of CPSed functional program:

it?
fxyzk=
k(z/((x+1)*2))

Primitive Model Transformers

Save
Load
Shuffle

SAVE

LOAD

Stack

Sp

Primitive Model Transformers

Transform the input model into new ones Save
Load
Shuffle
SAVE

Stack

LOAD

Sp

Primitive Model Transformers

Transform the input model into new ones Save
May emit instructions for loads and stores
Load

Shuffle

SAVE

LOAD

Stack

Sp

Examples

X:r X

z:fvo : :
y:r2 z Ir; z:fvo
fvl <-u
SAVE({x, y}) fvl <-x LOAD(ix,
fv2 <-y (&, 2}) r3<-2
X:ri
y:r2

Z:r3

What is the essence of
the inserted instructions
from SAVE and LOAD?

What is the difference
between splitting and
spilling?

They are actually doing
“live range splitting”
on-the-fly.

Spilling puts the whole life
span of a name in stack.
Splitting only puts part of
its life span in stack.

Branching

What if different registers are

. We need to shuffle
assigned to the same _
variables in different them for consistency.
branches

Need shuffle:
r2 <->r3

Shuffling

Shuffling may happen at

re — T2

Procedure calls ro — T3
Join points rs — T
T4 — Ts

Shuffling is like permutation rs — T4

Handling Shuffling

Break permutation into cycles (or paths):
(T‘l T T‘3) O (?"4 T’5)

Generate code to move variables in cycles:

T'e 1

1 r3
r3 ra
r2 r'e
e T4

T4 s

rtT1717 17171

rs e

Related Work

Mostly graph coloring (extensions) and linear scan (extensions).

Assumptions of Graph Coloring

Assumptions of Graph Coloring

A variable either lives in a register throughout its
life time, or lives in a stack location throughout its
life time

Assumptions of Graph Coloring

A variable either lives in a register throughout its
life time, or lives in a stack location throughout its
life time

A variable lives in the same register or stack
location throughout its life time

Assumptions of Graph Coloring

A variable either lives in a register throughout its life
time, or lives in a stack location throughout its life time
A variable lives in the same register or stack location
throughout its life time

But actually,

A variable may live in a register, move to a stack location,
and then move back to a (possibly different) register.

A variable may live in both a register AND a stack location.

Assumptions of Graph Coloring

A variable either lives in a register throughout its life
time, or lives in a stack location throughout its life time
A variable lives in the same register or stack location
throughout its life time

But actually,

A variable may live in a register, move to a stack location,

and then move back to a (possibly different) register.

A variable may live in both a register AND a stack location.
Graph Coloring doesn't capture this kind of semantics
and may generate inefficient code.

Goal of Graph Coloring

Goal of Graph Coloring

Goal: minimizing the number of allocated
registers. (Doesn't aim at reducing memory
traffic!)

Goal of Graph Coloring

Goal: minimizing the number of allocated
registers. (Doesn't aim at reducing memory
traffic!)

Produces good code only if no spilling
happens. Otherwise no guarantee about
memory traffic

Goal of Graph Coloring

Goal: minimizing the number of allocated
registers. (Doesn't aim at reducing memory
traffic!)

Produces good code only if no spilling
happens. Otherwise no guarantee about
memory traffic

Spilled variables may introduce unpredictably
many memory references

Is 1t still Graph Coloring?

Still need backtracking for “optimal”
allocation because of join points

Maybe reducible to SAT (thus a graph), but a
much more complex graph (may contain
continuations of the allocator)

Needs further investigation

Compare with Linear Scan

It never spills, but linear scan spills.
Does "online live range splitting”

existed partly in extended linear scan

usually done in a separate pass and thus offline (as
in LLVM option “pre-alloc-split”)

Implications to Verified Compilation

The model transformer semantics may be
used to simplify formal verification of register
allocation

Formerly this is done by dynamic “validation”
and not static verification (as in CompCert)

TODOs

Handle instructions with memory operands
and other irreqularities

Limited form of backtracking

Callee-save registers and link-time
optimization

An industrial-strength compiler backend
eventually

Acknowledgements

Thanks to R. Kent Dybvig, Andy Keep, Oleg
Kiselyov for helpful comments and discussions.

Questions?

	The Little Register Allocator
	The name of the game
	The game of the name
	The game of the name
	The game of the name
	Names, Registers, Stack
	Names, Registers, Stack
	Names, Registers, Stack
	Names, Registers, Stack
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Register Allocation
	Register Allocation
	Register Allocation
	Register Allocation
	Model
	Model
	Model
	Model
	Model and Reality
	Model Transformer Semantics
	Births of Names
	Deaths of Names
	Deaths of Names
	Deaths of Names
	Deaths of Names
	Deletion in Model
	Deletion in Model
	Midmodel
	Why midmodel?
	Why midmodel?
	The Bigger Picture
	Input Language
	Two Pass Allocation
	Two Pass Allocation
	Two Pass Allocation
	Reduction in compiler passes
	Starting Model
	Slide Number 46
	Primitive Model Transformers
	Primitive Model Transformers
	Primitive Model Transformers
	Examples
	Slide Number 51
	Branching
	Slide Number 53
	Shuffling
	Handling Shuffling
	Related Work
	Assumptions of Graph Coloring
	Assumptions of Graph Coloring
	Assumptions of Graph Coloring
	Assumptions of Graph Coloring
	Assumptions of Graph Coloring
	Goal of Graph Coloring
	Goal of Graph Coloring
	Goal of Graph Coloring
	Goal of Graph Coloring
	Is it still Graph Coloring?
	Compare with Linear Scan
	Implications to Verified Compilation
	TODOs
	Acknowledgements
	Questions?
	Thank you!
	Thank you!

