
Structural Version Control

1

Yin Wang

Structural Version Control

You know, it’s always safe to put “Towards” in the title
when you haven’t done much ;-)

Towards

1

Yin Wang

2

2

Q: What’s the best way to solve HARD problems?

2

Q: What’s the best way to solve HARD problems?

A: Don’t solve them. Make them DISAPPEAR.

2

Q: What’s the best way to solve HARD problems?

A: Don’t solve them. Make them DISAPPEAR.

This often just requires a slight change of DESIGN.

Introducing “Structural Programming”

3

Introducing “Structural Programming”

3

Disambiguate:
Structural Programming
not Structured Programming

Introducing “Structural Programming”

3

Disambiguate:
Structural Programming
not Structured Programming

The idea has been decades old

Introducing “Structural Programming”

3

Disambiguate:
Structural Programming
not Structured Programming

The idea has been decades old

Lambda calculus is even older

Introducing “Structural Programming”

3

Disambiguate:
Structural Programming
not Structured Programming

The idea has been decades old

Lambda calculus is even older

“What goes around comes around”

Outline
Structural Editing (other people’s work)
Structural Comparison (my work)
Structural Version Control (vaporware)

4

Programs are data structures
 Usually called “parse tree” or “AST” (abstract syntax tree)

5

Data structures are usually
encoded as text
function factorial(n) {

if (n == 0) {
return 1;

}
return n * factorial(n - 1);

}

6

Data structures are usually
encoded as text
function factorial(n) {

if (n == 0) {
return 1;

}
return n * factorial(n - 1);

}

The encoding scheme is called syntax

6

Data structures are usually
encoded as text
function factorial(n) {

if (n == 0) {
return 1;

}
return n * factorial(n - 1);

}

The encoding scheme is called syntax

6

keywords,
delimeters

Parsers
 A parser is a decoder from text to data structures
 Parsers are tricky to write and hard to debug

7

Parsers
 A parser is a decoder from text to data structures
 Parsers are tricky to write and hard to debug

We need parsers because we encode
programs into text!

7

Why text?
Write programs that do one thing and do it well
Write programs to work together
Write programs to handle text streams, because that is a

universal interface

8

Why text?
Write programs that do one thing and do it well
Write programs to work together
Write programs to handle text streams, because that is a

universal interface

A universal interface =/= THE universal interface

8

Text is an inconvenient universal
interface
 Data has different types: String, Int, records, functions, …
 Text is just one type: String
Why should we encode all other types into strings?

9

Programming without syntax
(demo: Kirill Osenkov’s editor prototype)

10

See also:
• MPS (JetBrains)
• Intentional Software
• Software Factories (Microsoft)
• paredit-mode (Emacs)

http://blogs.msdn.com/b/kirillosenkov/archive/2009/09/08/first-videos-of-the-structured-editor-prototype.aspx

Potentials of Structural Editing

11

Potentials of Structural Editing
 Easily extensible to ALL programming languages

11

Potentials of Structural Editing
 Easily extensible to ALL programming languages
 Semantics-aware context help (limit number of choices)

11

Potentials of Structural Editing
 Easily extensible to ALL programming languages
 Semantics-aware context help (limit number of choices)
 Unable to write ill-formed / ill-typed programs

11

Potentials of Structural Editing
 Easily extensible to ALL programming languages
 Semantics-aware context help (limit number of choices)
 Unable to write ill-formed / ill-typed programs
 Efficient transformations and refactorizations

11

Potentials of Structural Editing
 Easily extensible to ALL programming languages
 Semantics-aware context help (limit number of choices)
 Unable to write ill-formed / ill-typed programs
 Efficient transformations and refactorizations
 Pictures, math formulas together with programs

11

Potentials of Structural Editing
 Easily extensible to ALL programming languages
 Semantics-aware context help (limit number of choices)
 Unable to write ill-formed / ill-typed programs
 Efficient transformations and refactorizations
 Pictures, math formulas together with programs
 Incremental compilation at fine granularity

11

Potentials of Structural Editing
 Easily extensible to ALL programming languages
 Semantics-aware context help (limit number of choices)
 Unable to write ill-formed / ill-typed programs
 Efficient transformations and refactorizations
 Pictures, math formulas together with programs
 Incremental compilation at fine granularity
 Version control at fine granularity

11

New problems

12

New problems
 How do we display code in emails?
 Need to standardize a data format for parse trees
 Easy. We have been making standards all the time: ASCII,

Unicode, JPEG …

12

New problems
 How do we display code in emails?
 Need to standardize a data format for parse trees
 Easy. We have been making standards all the time: ASCII,

Unicode, JPEG …
 How do we do version control?
 No more text means no more “lines”
 … means most VC tools will stop working!

12

Outline
Structural Editing (other people’s work)
Structural Comparison (my work)
Structural Version Control (vaporware)

13

ydiff: Structural Diff
 Language-aware
 Refactor-aware
 Format-insensitive
 Comprehensible output
 Open-source

Demo

14

http://github.com/yinwang0/ydiff

http://www.cs.indiana.edu/%7Eyw21/ydiff.html
http://github.com/yinwang0/ydiff

Ingredients
 Structural comparison

algorithms
 Generalized parse tree

format
 Home-made parser

combinator library
 Experimental parsers for

JavaScript, C++, Scheme, …

15

Parsec.ss: Parser Combinator
Library in Scheme
 Modeled similar to Parsec.hs
 Macros make parsers look like BNF grammars (“DSL”)
 Left-recursion detection (direct / indirect)

16

Parsec.ss: Parser Combinator
Library in Scheme
 Modeled similar to Parsec.hs
 Macros make parsers look like BNF grammars (“DSL”)
 Left-recursion detection (direct / indirect)

16

Left-recursion Detection

17

Left-recursion Detection

17

Left-recursion Detection

trace

17

Left-recursion Detection

trace

17

Left-recursion Detection

trace

problem
token

17

Left-recursion Detection

trace

problem
token

17

Generalized Parse Tree Format18

Generalized Parse Tree Format18

Parsers Built

19

Parsers Built
 C++ (596 lines, incomplete, most of C++)

19

Parsers Built
 C++ (596 lines, incomplete, most of C++)
 JavaScript (464 lines, complete, may still contain bugs)

19

Parsers Built
 C++ (596 lines, incomplete, most of C++)
 JavaScript (464 lines, complete, may still contain bugs)
 (Scheme)

19

Key Algorithms
 Tree Editing Distance (TED)
 Move Detection
 Substructure Extraction

20

Tree Editing Distance

1

2 3

4

Node -> Node –> [Change]

21

Tree Editing Distance

1

2 3

4

1

2 3

45

Node -> Node –> [Change]

21

Tree Editing Distance

1

2 3

4

1

2 3

45

delete “4”?

Node -> Node –> [Change]

21

Tree Editing Distance

1

2 3

4

1

2 3

45

delete “4”? insert “5”?

Node -> Node –> [Change]

21

Tree Editing Distance

1

2 3

4

1

2 3

45

delete “4”? insert “5”?

modify “4”
into “5”?

Node -> Node –> [Change]

21

Tree Editing Distance

1

2 3

4

1

2 3

45

delete “4”? insert “5”?

modify “4”
into “5”?

All three
cases are

equally
possible

Node -> Node –> [Change]

21

Tree Editing Distance

1

2 3

4

1

2 3

45

delete “4”? insert “5”?

modify “4”
into “5”?

Minimize the
number of

changes that
make the two
trees equal

All three
cases are

equally
possible

Node -> Node –> [Change]

21

Tree Editing Distance

1

2 3

4

1

2 3

45

delete “4”? insert “5”?

modify “4”
into “5”?

Minimize the
number of

changes that
make the two
trees equal

All three
cases are

equally
possible

Node -> Node –> [Change]

21

cost = 3

cost = 2

cost = 1

Types of Changes
 Deletion
 Insertion
 Modification
 Move
 Reparent (aka “refactoring”)

22

Types of Changes
 Deletion
 Insertion
 Modification
 Move
 Reparent (aka “refactoring”)

TED can handle

22

Types of Changes
 Deletion
 Insertion
 Modification
 Move
 Reparent (aka “refactoring”)

TED can handle

Observation: allowing modification generates incomprehensible results

22

Tree Editing Distance with
Recursion

diff-node diff-list
mutual recursion

Compare
two nodes

Compare
components of
the two nodes

23

diff-node :: Node -> Node –> [Change]
24

diff-node :: Node -> Node –> [Change]
24

diff-node :: Node -> Node –> [Change]
dispatch on
node types

24

diff-node :: Node -> Node –> [Change]
dispatch on
node types

memoization

24

diff-node :: Node -> Node –> [Change]

base
cases

dispatch on
node types

memoization

24

diff-node :: Node -> Node –> [Change]

base
cases

dispatch on
node types

memoization

only compare nodes
of the same type

24

diff-node :: Node -> Node –> [Change]

substructure
extraction from the

changes

base
cases

dispatch on
node types

memoization

only compare nodes
of the same type

24

diff-node :: Node -> Node –> [Change]

substructure
extraction from the

changes

base
cases

dispatch on
node types

memoization

only compare nodes
of the same type

compare
subnodes

24

diff-list :: [Node] -> [Node] –> [Change]

25

diff-list :: [Node] -> [Node] –> [Change]

compare head
nodes

25

diff-list :: [Node] -> [Node] –> [Change]

compare head
nodes

shortcut: same
definition or
unchanged

25

diff-list :: [Node] -> [Node] –> [Change]
Otherwise, two

choices:
delete head1

or
insert head2

compare head
nodes

shortcut: same
definition or
unchanged

25

diff-list :: [Node] -> [Node] –> [Change]
Otherwise, two

choices:
delete head1

or
insert head2

compare head
nodes

shortcut: same
definition or
unchanged

pick the
branch with
lower cost

25

Move Detection
 Some moved node can be detected by simple pairwise

comparison between DELETED and INSERTED change
sets.

normal diff (Git)

26

Move Detection
 Some moved node can be detected by simple pairwise

comparison between DELETED and INSERTED change
sets.

normal diff (Git)

26

Move Detection
 Some moved node can be detected by simple pairwise

comparison between DELETED and INSERTED change
sets.

normal diff (Git) ydiff

26

Substructure Extraction

27

Substructure Extraction

27

Substructure Extraction

27

Substructure Extraction

27

Substructure Extraction
frame: keep as a
new change for

further extractions

27

Outline
Structural Editing (other people’s work)
Structural Comparison (my work)
Structural Version Control (vaporware)

28

Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

1 apples
2 bananas
3 beer
4 cookies
5 rice

1 apples
2 bananas
3 cookies
4 pasta
5 rice

Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

1 apples
2 bananas
3 beer
4 cookies
5 rice

1 apples
2 bananas
3 cookies
4 pasta
5 rice

Insert “pasta”
on line 4

Insert “beer”
on line 3

Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

1 apples
2 bananas
3 beer
4 cookies
5 rice

1 apples
2 bananas
3 cookies
4 pasta
5 rice

Insert “pasta”
on line 4

Insert “beer”
on line 3

1 apples
2 bananas
3 beer
4 cookies
5 pasta
6 rice

Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

1 apples
2 bananas
3 beer
4 cookies
5 rice

1 apples
2 bananas
3 cookies
4 pasta
5 rice

Insert “pasta”
on line 4

Insert “beer”
on line 3

1 apples
2 bananas
3 beer
4 cookies
5 pasta
6 rice

Insert “pasta”
on line 5

Insert “beer”
on line 3

Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

1 apples
2 bananas
3 beer
4 cookies
5 rice

1 apples
2 bananas
3 cookies
4 pasta
5 rice

Insert “pasta”
on line 4

Insert “beer”
on line 3

1 apples
2 bananas
3 beer
4 cookies
5 pasta
6 rice

Insert “pasta”
on line 5

Insert “beer”
on line 3

 Modifying a line of text
changes the line number of
consequent lines

Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

1 apples
2 bananas
3 beer
4 cookies
5 rice

1 apples
2 bananas
3 cookies
4 pasta
5 rice

Insert “pasta”
on line 4

Insert “beer”
on line 3

1 apples
2 bananas
3 beer
4 cookies
5 pasta
6 rice

Insert “pasta”
on line 5

Insert “beer”
on line 3

 Modifying a line of text
changes the line number of
consequent lines
 Patch that says “insert

pasta to line 4” must
relocate to line 5

Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

1 apples
2 bananas
3 beer
4 cookies
5 rice

1 apples
2 bananas
3 cookies
4 pasta
5 rice

Insert “pasta”
on line 4

Insert “beer”
on line 3

1 apples
2 bananas
3 beer
4 cookies
5 pasta
6 rice

Insert “pasta”
on line 5

Insert “beer”
on line 3

 Modifying a line of text
changes the line number of
consequent lines
 Patch that says “insert

pasta to line 4” must
relocate to line 5
  Patch Theory (Darcs)

Prediction 1: merging will no longer be
a problem in Structural Version Control

30

Modifying Different Nodes
31

Modifying Different Nodes
31

1

2 3

4

Modifying Different Nodes
31

1

2 3

4

Each node has a
GUID

#2EA4 #5B40

#3224

#2048

Modifying Different Nodes
31

1

2 3

4

Each node has a
GUID

#2EA4 #5B40

#3224

#2048

1

2 3

45
#323F

#5B40

#3224

#2EA4

#2048

1

2 3

46
#3248

#5B40

#3224

#2EA4

#2048

Modifying Different Nodes
31

1

2 3

4

Each node has a
GUID

#2EA4 #5B40

#3224

#2048

1

2 3

45
#323F

#5B40

#3224

#2EA4

#2048

1

2 3

46
#3248

#5B40

#3224

#2EA4

#2048

Insert node
#323F containing
“5” in node #2EA4

Insert node #3248
containing “6” in

node #5B40

Modifying Different Nodes
31

1

2 3

4

Each node has a
GUID

Insert node #323F
containing “5” in node

#2EA4
Insert node #3248

containing “6” in node
#5B40

#2EA4 #5B40

#3224

#2048

1

2 3

45
#323F

#5B40

#3224

#2EA4

#2048

1

2 3

46
#3248

#5B40

#3224

#2EA4

#2048

1

2 3

465

#5B40

#3224

#2EA4

#2048#3248#323F

Insert node
#323F containing
“5” in node #2EA4

Insert node #3248
containing “6” in

node #5B40

Modifying The Same Node 32

Modifying The Same Node 32

1

2 3

4 5

Modifying The Same Node 32

1

2 3

4 5
0.2 0.8

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Insert node #2048
containing “6” in
node #5B40, at

position 0.5

0.5

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Insert node #2048
containing “6” in
node #5B40, at

position 0.5

0.5

1

2 3

4 5
0.2 0.8

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Insert node #2048
containing “6” in
node #5B40, at

position 0.5

0.5

7

1

2 3

4 5
0.2 0.8

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Insert node #2048
containing “6” in
node #5B40, at

position 0.5

0.5

7

1

2 3

4 5
0.2 0.8

Insert node #2056
containing “7” in
node #5B40, at

position 0.1

0.1

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Insert node #2048
containing “6” in
node #5B40, at

position 0.5

0.5

7

1

2 3

4 5
0.2 0.8

Insert node #2056
containing “7” in
node #5B40, at

position 0.1

0.1

7

1

2 3

4 6 5

Insert node #2048 containing “6”
in node #5B40, at position 0.5

Insert node #2056 containing “7”
in node #5B40, at position 0.1

0.1 0.2 0.5 0.8

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Insert node #2048
containing “6” in
node #5B40, at

position 0.5

0.5

7

1

2 3

4 5
0.2 0.8

Insert node #2056
containing “7” in
node #5B40, at

position 0.1

0.1

7

1

2 3

4 6 5

Insert node #2048 containing “6”
in node #5B40, at position 0.5

Insert node #2056 containing “7”
in node #5B40, at position 0.1

0.1 0.2 0.5 0.8

Because the real line can be infinitely divided, we
can always sort the numbers into relative positions!

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Insert node #2048
containing “6” in
node #5B40, at

position 0.5

0.5

7

1

2 3

4 5
0.2 0.8

Insert node #2056
containing “7” in
node #5B40, at

position 0.1

0.1

7

1

2 3

4 6 5

Insert node #2048 containing “6”
in node #5B40, at position 0.5

Insert node #2056 containing “7”
in node #5B40, at position 0.1

0.1 0.2 0.5 0.8

Because the real line can be infinitely divided, we
can always sort the numbers into relative positions!

100%
conflict-free
merging!!

Modifying The Same Node 32

6

1

2 3

4 5
0.2 0.8

Insert node #2048
containing “6” in
node #5B40, at

position 0.5

0.5

7

1

2 3

4 5
0.2 0.8

Insert node #2056
containing “7” in
node #5B40, at

position 0.1

0.1

7

1

2 3

4 6 5

Insert node #2048 containing “6”
in node #5B40, at position 0.5

Insert node #2056 containing “7”
in node #5B40, at position 0.1

0.1 0.2 0.5 0.8

Because the real line can be infinitely divided, we
can always sort the numbers into relative positions!

100%
conflict-free
merging!!

What’s wrong? 33

0.2 x = 1

0.8 print y

What’s wrong? 33

0.2 x = 1

0.8 print y

0.2 x = 1

0.5 y = 2

0.8 print y

0.2 x = 1

0.5 blah

0.65 y = 3

0.8 print y

What’s wrong? 33

0.2 x = 1

0.8 print y

0.2 x = 1

0.5 y = 2

0.8 print y

0.2 x = 1

0.5 blah

0.65 y = 3

0.8 print y

0.2 x = 1

0.5 y = 2

0.65 y = 3

0.8 print y

What’s wrong? 33

0.2 x = 1

0.8 print y

0.2 x = 1

0.5 y = 2

0.8 print y

0.2 x = 1

0.5 blah

0.65 y = 3

0.8 print y

0.2 x = 1

0.5 y = 2

0.65 y = 3

0.8 print y

Merge succeed,
but bugs introduced!

What’s wrong? 33

0.2 x = 1

0.8 print y

0.2 x = 1

0.5 y = 2

0.8 print y

0.2 x = 1

0.5 blah

0.65 y = 3

0.8 print y

0.2 x = 1

0.5 y = 2

0.65 y = 3

0.8 print y

All line-based VC
tools have this
behavior. Try it!

Merge succeed,
but bugs introduced!

Modifying The Same Node
(a more sensible way)

34

Modifying The Same Node
(a more sensible way)

34

1

2 3

4 5

1

2 3

4 5

Modifying The Same Node
(a more sensible way)

34

6

1

2 3

4 5

1

2 3

4 5

Modifying The Same Node
(a more sensible way)

34

6

1

2 3

4 5 7

1

2 3

4 5

Modifying The Same Node
(a more sensible way)

34

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Modifying The Same Node
(a more sensible way)

34

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Insert node #2056
containing “7” in

node #5B40, before
#31FE

Modifying The Same Node
(a more sensible way)

34

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Insert node #2056
containing “7” in

node #5B40, before
#31FE

7

1

2 3

4 6 5

Modifying The Same Node
(a more sensible way)

34

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Insert node #2056
containing “7” in

node #5B40, before
#31FE

7

1

2 3

4 6 5

Insert node #2048 containing “6”
in node #5B40, between #31FE

and #3208

Insert node #2056 containing “7”
in node #5B40, before #31FE

Modifying The Same Node (again) 35

Modifying The Same Node (again) 35

1

2 3

4 5

1

2 3

4 5

Modifying The Same Node (again) 35

6

1

2 3

4 5

1

2 3

4 5

Modifying The Same Node (again) 35

6

1

2 3

4 5 7

1

2 3

4 5

Modifying The Same Node (again) 35

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Modifying The Same Node (again) 35

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Insert node #2056
containing “7” in

node #5B40,
between #31FE and

#3208

Modifying The Same Node (again) 35

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Insert node #2056
containing “7” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 6 5

Modifying The Same Node (again) 35

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Insert node #2056
containing “7” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 6 5

Insert node #2048 containing “6”
in node #5B40, between #31FE

and #3208

Insert node #2056 containing “7”
in node #5B40, between #31FE

and #3208

Modifying The Same Node (again) 35

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Insert node #2056
containing “7” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 6 5

Insert node #2048 containing “6”
in node #5B40, between #31FE

and #3208

Insert node #2056 containing “7”
in node #5B40, between #31FE

and #3208

Modifying The Same Node (again) 35

6

1

2 3

4 5

Insert node #2048
containing “6” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 5

Insert node #2056
containing “7” in

node #5B40,
between #31FE and

#3208

7

1

2 3

4 6 5

Insert node #2048 containing “6”
in node #5B40, between #31FE

and #3208

Insert node #2056 containing “7”
in node #5B40, between #31FE

and #3208

Conflict!

Some observations into text-base
VC tools

36

Some observations into text-base
VC tools

 Grounds are where programs sit on.

36

Some observations into text-base
VC tools

 Grounds are where programs sit on.
 Merging is hard because simultaneous edits change the

grounds in different ways, but text-based VC tools don’t have
a handle on them.

36

Some observations into text-base
VC tools

 Grounds are where programs sit on.
 Merging is hard because simultaneous edits change the

grounds in different ways, but text-based VC tools don’t have
a handle on them.
 This is why Darcs uses Patch Theory, which gives us limited

power for reasoning about the grounds.

36

Some observations into text-base
VC tools

 Grounds are where programs sit on.
 Merging is hard because simultaneous edits change the

grounds in different ways, but text-based VC tools don’t have a
handle on them.
 This is why Darcs uses Patch Theory, which gives us limited

power for reasoning about the grounds.
 Git uses hash values to locate the grounds, but has larger

granularity. Also, hash values have dependency on the contents.

36

Some observations into text-base
VC tools

 Grounds are where programs sit on.
 Merging is hard because simultaneous edits change the

grounds in different ways, but text-based VC tools don’t have a
handle on them.
 This is why Darcs uses Patch Theory, which gives us limited

power for reasoning about the grounds.
 Git uses hash values to locate the grounds, but has larger

granularity. Also, hash values have dependency on the contents.
 Once we have true handles on the grounds, the problem

disappears.

36

What’s next?

37

What’s next?
 Other scenarios

37

What’s next?
 Other scenarios
 HOW MUCH and WHAT context to include in the patches?

37

What’s next?
 Other scenarios
 HOW MUCH and WHAT context to include in the patches?
 A descriptive language for patches, and a constraint solver

for merging them?

37

What’s next?
 Other scenarios
 HOW MUCH and WHAT context to include in the patches?
 A descriptive language for patches, and a constraint solver

for merging them?
 A database-like transaction system for parse tree structures?

37

What’s next?
 Other scenarios
 HOW MUCH and WHAT context to include in the patches?
 A descriptive language for patches, and a constraint solver

for merging them?
 A database-like transaction system for parse tree structures?
 Let the structural editor construct the change sets?

37

What’s next?
 Other scenarios
 HOW MUCH and WHAT context to include in the patches?
 A descriptive language for patches, and a constraint solver

for merging them?
 A database-like transaction system for parse tree structures?
 Let the structural editor construct the change sets?
 Generalize structural programming to natural languages?

37

Discussions

38

	 Structural Version Control
	 Structural Version Control
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Introducing “Structural Programming”
	Introducing “Structural Programming”
	Introducing “Structural Programming”
	Introducing “Structural Programming”
	Introducing “Structural Programming”
	Outline
	Programs are data structures
	Data structures are usually encoded as text
	Data structures are usually encoded as text
	Data structures are usually encoded as text
	Parsers
	Parsers
	Why text?
	Why text?
	Text is an inconvenient universal interface
	Programming without syntax (demo: Kirill Osenkov’s editor prototype)
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	New problems
	New problems
	New problems
	Outline
	ydiff: Structural Diff
	Ingredients
	Parsec.ss: Parser Combinator Library in Scheme
	Parsec.ss: Parser Combinator Library in Scheme
	Left-recursion Detection
	Left-recursion Detection
	Left-recursion Detection
	Left-recursion Detection
	Left-recursion Detection
	Left-recursion Detection
	Generalized Parse Tree Format
	Generalized Parse Tree Format
	Parsers Built
	Parsers Built
	Parsers Built
	Parsers Built
	Key Algorithms
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Types of Changes
	Types of Changes
	Types of Changes
	Tree Editing Distance with Recursion
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	Move Detection
	Move Detection
	Move Detection
	Substructure Extraction
	Substructure Extraction
	Substructure Extraction
	Substructure Extraction
	Substructure Extraction
	Outline
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Prediction 1: merging will no longer be a problem in Structural Version Control
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	What’s wrong?
	What’s wrong?
	What’s wrong?
	What’s wrong?
	What’s wrong?
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	What’s next?
	What’s next?
	What’s next?
	What’s next?
	What’s next?
	What’s next?
	What’s next?
	Discussions

