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Towards Structural Version Control

Yin Wang

You know, it's always safe to put “Towards” in the title
when you haven’'t done much ;-)
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This often just requires a slight change of DESIGN.
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Introducing “Structural Programming”

Disambiguate:
Structural Programming

not Structured Programming

The idea has been decades old

Lambda calculus I1s even older

“What goes around comes around”




Outline

= Structural Editing (other people’s work)
= Structural Comparison (my work)
= Structural Version Control (vaporware)




Programs are data structures

= Usually called “parse tree” or “AST” (abstract syntax tree)
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return n * factorial(n - 1);

}
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Data structures are usually

encoded as text
function] factorial[(h) [ delimeters

i == ) [

return 1|Z|

[return]n * factoriall(h - 1;]

K

The encoding scheme is called syntax
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Parsers

= A parser is a decoder from text to data structures
= Parsers are tricky to write and hard to debug

We need parsers because we encode
programs into text!
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Why text?

= Write programs that do one thing and do it well
= Write programs to work together

= Write programs to handle text streams, because that is a
universal interface

A universal interface =/= THE universal interface |
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Text IS an Inconvenient universal
Interface

= Data has different types: String, Int, records, functions, ...
= Text is just one type: String
= Why should we encode all other types into strings?
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Programming without syntax

(demo:

ool EditorForm

ext Help || ¥) Undo

public cla

public static void Main(string args)
inti=#9
string hella™
foreach s g arguemtn in args
if tri

driteline(i)

public

Press [DownArrow] to ct the first
to the nex

655 Program.

'S editor prototype)

See also:

 MPS (JetBrains)

* Intentional Software

« Software Factories (Microsoft)
« paredit-mode (Emacs)



http://blogs.msdn.com/b/kirillosenkov/archive/2009/09/08/first-videos-of-the-structured-editor-prototype.aspx

) I.

Potentials of Structural Editing



) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages



) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages
= Semantics-aware context help (limit number of choices)




) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages
= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs



) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

= Efficient transformations and refactorizations



) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

= Efficient transformations and refactorizations

= Pictures, math formulas together with programs



) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

= Efficient transformations and refactorizations

= Pictures, math formulas together with programs

= Incremental compilation at fine granularity



) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

= Efficient transformations and refactorizations

= Pictures, math formulas together with programs

= Incremental compilation at fine granularity

= Version control at fine granularity
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New problems

= How do we display code in emails?
= Need to standardize a data format for parse trees

= Easy. We have been making standards all the time: ASCII,
Unicode, JPEG ...

= How do we do version control?
= NO more text means no more “lines”
= ... means most VC tools will stop working!



Outline

= Structural Editing (other people’s work)
= Structural Comparison (my work)
= Structural Version Control (vaporware)




ydiff: Structural Diff

= Language-aware

= Refactor-aware

= Format-insensitive

= Comprehensible output
= Open-source

http://github.com/yinwangO/ydiff

1
Demo



http://www.cs.indiana.edu/%7Eyw21/ydiff.html
http://github.com/yinwang0/ydiff

Ingredients

= Structural comparison
algorithms

= Generalized parse tree
format

= Home-made parser
combinator library

= Experimental parsers for

JavaScript, C++, Scheme, ...
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Library in Scheme
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Parsec.ss: Parser Combinator
Library in Scheme

= Modeled similar to Parsec.hs
= Macros make parsers look like BNF grammars (“DSL")
= Left-recursion detection (direct / indirect)

[::= Efunction-definition 'function

(Bor (B... (@? Smodifiers) Stype
(@= "mame Sidentifier ) S$formal-parameter-1list)
(@... (@= "mame Sidentifier ) S£formal-parameter-1list))

(@7 £initializer)
Sfunction-body)
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Left-recursion Detection

apply-check: left-recursion detected
parser: #<procedure:slefti>

[::= £leftl 'leftl start token: #(=truct:Token 0 2 ok)

(Bzeqg $1eft2 ($§ "ok"))) stack trace: #<procedure:...\ydiff\parsec.==:364:4>
#<procedure:$lefrls
(1:= §left2 'left2 #<procedure:...\ydiff\parsec.=3:364:4>
(Bor (@seq Sleftl (££ "ok")) #$<procedure:...\vdiff\parsec.=s3:399:4>
(£5 "ok"))) $<procedure:£lefcZ>

(%eval %leftl (=can "ok ok"))

*zcheme*
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Left-recursion Detection

apply-check: |left-recursion detected
parser: #<procedure:slefti>
start token: #(=truct:Token 0 2 ok)

[1:= Eleftl 'leftl

(Bseq EEE?E%:‘$$ mokm) ) ) stack trace: #<procedure:...‘ydiff\parsec.s=s:364:4>
$<procedure:$lefrls
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($eval %leftl (=can "ok ok"))
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| eft-recursion Detection problem

apply-check: |left-recursion detected
parser: #<procedure:sleftl>
start token: |#({=truct:Token 0 2 ck]]

1= Eleftl 'leftl

@zeq Eleftz | (88 "ok® stack trace: FLproccdUrc:...wydllilwparsec.ss:364:4>
f<procedurs:$leftl>
= £]1eft? 'left? = p:cceﬁ::e:...fyﬂ;rf}parsec.ss:SEQ:Q}
Bor (@seq|$lefti]| (88 mok” #<procedure:...\ydiff\parsec.ss:399:4>
gg moEm #<procedure:$left2>

fewval £leftl (scan "ok ok"
*zcheme*
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| eft-recursion Detection problem

apply-check: |left-recursion detected
parser: #<procedure:sleftl>
start token: |#({=truct:Token 0 2 ck]]

1= Eleftl 'leftl

@zeq Eleftz | (88 "ok® stack trace: FLproccdUrc:...wydllilwparsec.ss:364:4>
f<procedurs:$leftl>
= £]1eft? 'left? = p:cceﬁ::e:...fyﬂ;rf}parsec.ss:SEQ:Q}
Bor (@seq|$lefti]| (88 mok” #<procedure:...\ydiff\parsec.ss:399:4>
gg moEm #<procedure:$left2>

fewval £leftl (scan fok |ok"

*zcheme*




Handle<5tring> 5hell: :EReadFile ({const char¥* name) {

int =size = 0;
char® chars = ReadChars (name, &=2ize);
if (chars = NULL) return Handle<String>():

Handle<S5tring> result = S5tring: :New(chars):

delete[] chars;
return result;




Handle<5tring> 5hell: :EReadFile ({const char¥* name) {
int =ize = 0;
char® chars = ReadChars (name, &=1ize);
if (chars = NULL) return Handle<S5tring>{():

(Expr 0 235|'function| (list
(Expr 0 14 |'type| (1list
|[Expr 0 & ridentifier (list (Expr 0 & 'id (li=st (Token 0 & "Handle")))))
} (Expr & 14 |'type-parameter
(list (Expr 7 13 |'type
(list (Expr 7 13|'identifier
(list (Expr 7 13 'id (list (Token 7 13 "String™))))))1)))))
(Expr 15 30 |"name
(list
(Expr 15 30|'identifier
(list

(Token 15 20 "Shell")
(Token 20 22 "::")
(Expr 22 30 'id (list (Token 22 30 "ReadFile™))}}))))
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Parsers Built

= C++ (596 lines, incomplete, most of C++)
= JavaScript (464 lines, complete, may still contain bugs)

[:: Sopen
: (SCheme l:lgnr (@~ (") (@~ "[™))) )

(11 %2claose

(Bor (@~ ™)™} (@~ "1")))

(:: Snon-parens
(@and (@! ZSopen) (@! Sclaose)))

[::= Sparens 'sexp
(Bzeq Sopen (B* %£=zexp) %Sclose))

i1 Ssexp
{8+ (Bor Sparens Snon-parens)))

:: Eprogram S$sexp)




Key Algorithms

= Tree Editing Distance (TED)
= Move Detection

= Substructure Extraction




Tree Editing Distance * |

Node -> Node —> [Change]
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78 VAN
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Tree Editing Distance

e Node -> Node —> [Change]
~ cases are
equally oy @
possible nodify 4

delete “411?
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Types of Changes

= Deletion €—
P e/_
= Modification

= Move
= Reparent (aka “refactoring”)

Observation: allowing modification generates incomprehensible results




Tree Editing Distance with
Recursion

mutual recursion

diff-node | diff-list

Compare Compare

two nodes components of
the two nodes




diff-node :: Node -> Node —> [Change] : I.




diff-node :: Node -> Node —> [Change] :

{cond
[ (hash—-get *diff-hash* nodel nodel)
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[ (and (Char? nodel) (Char? nodel2))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
nodel nodel) ]
[(and (5tr? nodel) (5tr? node2))
(diff-=string (Str-text nodel) (Str-text node?) nodel nodel) ]
[ (and (Comment? nodel) (Comment? nodez) )
(diff-=string (Comment-text nodel) (Comment-text node?) nodel nodel) )
[(and (Token? nodel) (Token? nodel))
(diff-string (Token-text nodel) (Token-text nodel) nodel nodez) )
[ (and (Expr? nodel) (Expr? node2)
(eqg? (get-type nodel) [(get-type nodel)))

(letwv ([ (m c) (diff-list (Expr-elts nodel) (Expr-elts nodelZ) move?) ])
[try—-extract m c) )]

[(and (pair? nodel) (not (pair? node2) ) )

(diff-li=t nodel (list node?) move?) ]

[(and (not (pair? nodel)) (pair? nodel) )

(diff-1i=t (li=st nodel) nodeZ move?) ]

[ (and (pair? nodel) (pair? nodel))
(diff-1i=t nodel nodeZ move?) ]
[el=e

(letw ([ (m c) (total nodel node2)])

(try-extract m <)) ])))
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ode —> [Change] :

[ thazsh—-get *diff-hash* nodel nodez)
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[(and (Char? nodel) (Char? nodel))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
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[fand (pair? nodel) (pair? nodel))

(diff-1i=t nodel nodeZ move?) ]
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(letw ([ (m c) (total nodel node2)])
[try-extract m <)) ])))
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odel nodel) ]

[fand (pair? nodel) (not (pair? node2) ) )
(diff-li=t nodel (list node?) move?) ]
[(fand (not (pair? nodel)) (pair? nodel) )
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diff-list :: [Node] -> [Node] —> [Change]

(define guess
(lambda (1=1 1s2)
(letv ([ (m0 c0) (diff-node (car 1=21) (car 1l=2) move?) ]
[(ml 1) (diff-listl table (cdr 1sl) (cdr 1s2) move?) ]
[costl (+ cO cl)])

{cond
[lor (same-def? (car 1l=sl) (car 1l=2))
([and (not (different-def? (car 1l=l1) (car 1=s2)))
(2imilar? (car 1l=21) (car 1l=2) cl)))
(memo (append md ml) costl)]
[el=ze

(letv ([ (m2 c2) (diff-li=stl table (cdr 1lsl) 1ls2 move?)]
[(m3 c3) [(diff-li=stl table 121 (cdr l1ls2) move?) ]
[cost2 (+ c2 [(node-size (car 1=1)))]
[costd (+ 3 (node-size (car 1=2)))])
[cond
[ (<= cost2 cost3d)
(memo (append (del (car 1=s1)) m2) cost2) )
[el=e
(memo (append (ins

(car 1=2)) m3) cost3)]))1))))
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diff-list :: [NC le] -> [N
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] move?) ]
(cdr 1s2) move?) ]

{cond
[Jor (zame-def? (car 1l=sl) (car 1l=2))
([and (not (different-def? (car 1l=l1) (car 1=s2)))
(2imilar? (car 1l=21) (car 1l=2) cl)))
memo (append md ml) costl)]
[el=ze

(letv ([ (m2 c2) (diff-li=stl table (cdr 1lsl) 1ls2 move?)]
[(m3 c3) [(diff-li=stl table 121 (cdr l1ls2) move?) ]
[cost2 (+ c2 [(node-size (car 1=1)))]
[costd (+ 3 (node-size (car 1=2)))])
[cond
[ (<= cost2 cost3d)
(memo (append (del (car 1=s1)) m2) cost2) )
[el=e
(memo (append (ins

(car 1=2)) m3) cost3)]))1))))
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compare head
nodes

shortcut: same

diff-list :: [NC le] -> [No  SE™onetinge

unchanged
. N Otherwise, two
define guess .
lambda (1s1 132 choices:
letv ([ (m0 cO diff-node| (car 1s1 car 2} move?) ] delete headl
[(ml <1 diff-1i=tl table (cdr 1= cdr 1=2) move? or
e i en et insert head?
[Jor (same-def? (car 1l=1 car l=Z
and (not (different-def? (car 1=l car 1l=s2
2imilar? (car l1l=1 car 1=2) c0
memo (append md ml) costl
[el=e
letw D (mZ2 o2 diff-1i=tl table (cdr l=1l) 1l=Z2 move?

m3 c3 diff-li=stl table 131 (cdr l1ls2) move?
[cost? (+ c2 (node-size (car 1=l
costd (+ 3 (node-size (car ls2
cond
<= costd cost3
mems (append (del (car 1=s1 ms) costd
[el=e
memo (append (ins (car 1s2 m3) costd
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compare head
nodes

shortcut: same

diff-list :: [NC le] -> [No  SE™onetinge

unchanged
. N Otherwise, two
define guess .
lambda (131 1s2 choices:
letv ([ (m0 cO diff-node| (car 1s1 car 2} move?) ] delete headl
[(ml <1 diff-1i=tl table (cdr 1= cdr 1=2) move? or
[costl (+ 0 cl .
cond insert head?
[for (same-def? (car 1sl1 car 1lsZ
and (not (different-def? (car 1lsl car l1ls?
similar? (car 1lsl car l1ls2Z ci
. memo (append md ml) costl
pick the eTse

branch with letv ([[ (m2 c2) (diff-listl table (cdr 1s1) 132 mave?
IOWGr COSt ! m3 53 dfff—listl_table 121 (cdr 1s2) move?
[cost? (+ c2 (node-size (car 1=l
costd (+ 3 (node-size (car ls2
cond
<= costd cost3
mems (append | (del (car 1=s1 ms) costd
[el=e
memo (append |(ins (car 1s2 m3) costd
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Move Detection

= Some moved node can be detected by simple pairwise
comparison between and INSERTED change
sets.

@@ 1,11 +1,11 @@
~(define-syntax runs

" A o IR X) (jedr =x))))
}otrun #f iw) oz ...

((_ =) (edx =)))) ( (=) g |...) (ran &£ (=) |g |--
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# append was me d into appendill as an inner function

append (1s1,
if (1s1
return

return Cons (1sl.first|,

append (1s1.

rest,
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# append was moved into appendill as an inner function

# with some modificati appendAll is c«

# be a wrapping function for append.

def appendall (*lists):

def append(1lsl,
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return

return append (1sl.snd, Pair (lsl.fst/, 1s2})

return foldl (appendl, nil, slist(lists))
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return

return Cons (1sl.first|,

append (1s1.

rest,
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Extraction

# append was moved into appendill as an inner function

# with some modificati appendall is c

# be a wrapping function for append.

def appendall (*lists):

def append(lsl, 1s2):

if (1s1 nil) :

return
else:
Pair|(lsl.fst|, 1:

return append (1sl.snd,

return foldl (appendl, nil, slist(lists))
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Substructure Extraction

# append was moved into appendill as an inner function
# with some modifications. appendill is cc
# append was me d into appendill as an inner function # be a wrapping function for append.
def appendAll (*lists):
append (1s1,
if (1s1

return

return append (lsl.rest, Cons(lsl.first, 1s2))

return foldl (appendl, nil, slist(lists))
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frame: keep as a

Substructure Extraction new change for

further extractions

# append was m d into appendal En inner function
# with some modifications. append
# append was moved into appendall as an inner function # be a wrapping function for appen
# with some modifications. def appendAll (*lists):
def append(1lsl, s2) :
if (1sl1 == nil):

return

return append (lsl.rest, Cons(lsl.first, 1s2))

return foldl (appendl, nil, slist(lists))




Outline

= Structural Editing (other people’s work)
= Structural Comparison (my work)
= Structural Version Control (vaporware)
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4 cookies

5rice y
1 apples -- -

2 bananas
3 cookies
4 rice

= Modifying a line of text

% gpples changes the line number of
ananas consequent lines

3 cookies | _

4 pasta - = Patch that says “insert

5 rice pasta to line 4” must

relocate to line
= =» Patch Theory (Darcs)
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. merging will no longer be
a problem in Structural Version Control
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Insert node #3248
containing “6” in
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Insert node #2056 containing “7”
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Because the real line can be infinitely divided, we
can always sort the numbers into relative positions!
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Insert node #2048 containing “6”

Insert node #2048 Insert node #2056 in node #5B40, at position 0.5
Containing "6 Contammg rrin Insert node #2056 containing “7”
node #5B40, node #5B40,

in node #5B40, at position 0.1
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Some observations into text-base
VC tools

= Grounds are where programs sit on.

= Merging is hard because simultaneous edits change the
grounds in different ways, but text-based VC tools don’t have a
handle on them.

= This is why Darcs uses Patch Theory, which gives us limited
power for reasoning about the grounds.

= Git uses hash values to locate the grounds, but has larger
granularity. Also, hash values have dependency on the contents.

= Once we have true handles on the grounds, the problem
disappears.



What's next?



What's next?

= Other scenarios




What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?




What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

= A descriptive language for patches, and a constraint solver
for merging them?



. I.

What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

= A descriptive language for patches, and a constraint solver
for merging them?

= A database-like transaction system for parse tree structures?



. I.

What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

= A descriptive language for patches, and a constraint solver
for merging them?

= A database-like transaction system for parse tree structures?
= Let the structural editor construct the change sets?



37

What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

= A descriptive language for patches, and a constraint solver
for merging them?

= A database-like transaction system for parse tree structures?
= Let the structural editor construct the change sets?
= Generalize structural programming to natural languages?



DiIScussIons
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