1 I.

Structural Version Control

Yin Wang

1 I.

Towards Structural Version Control

Yin Wang

You know, it's always safe to put “Towards” in the title
when you haven’'t done much ;-)

2 I.

Q: What's the best way to solve HARD problems?

2 I.

Q: What's the best way to solve HARD problems?

A: Don’t solve them. Make them DISAPPEAR.

2 I.

Q: What's the best way to solve HARD problems?

A: Don’t solve them. Make them DISAPPEAR.

This often just requires a slight change of DESIGN.

Introducing “Structural Programming”

Introducing “Structural Programming”

Disambiguate:
Structural Programming
not Structured Programming

Introducing “Structural Programming”

Disambiguate:
Structural Programming

not Structured Programming

The idea has been decades old

Introducing “Structural Programming”

Disambiguate:
Structural Programming

not Structured Programming

The idea has been decades old

Lambda calculus I1s even older

Introducing “Structural Programming”

Disambiguate:
Structural Programming

not Structured Programming

The idea has been decades old

Lambda calculus I1s even older

“What goes around comes around”

Outline

= Structural Editing (other people’s work)
= Structural Comparison (my work)
= Structural Version Control (vaporware)

Programs are data structures

= Usually called “parse tree” or “AST” (abstract syntax tree)

Data structures are usually
encoded as text

function factorial(n) {

if (n == 0) {

return 1;

}

return n * factorial(n - 1);

}

Data structures are usually
encoded as text

function factorial(n) {
iIT (n==0) {

return 1;
ks

return n * factorial(n - 1);

}

The encoding scheme is called syntax

Data structures are usually

encoded as text
function] factorial[(h) [delimeters

i ==) [

return 1|Z|

[return]n * factoriall(h - 1;]

K

The encoding scheme is called syntax

Parsers

= A parser is a decoder from text to data structures
= Parsers are tricky to write and hard to debug

Parsers

= A parser is a decoder from text to data structures
= Parsers are tricky to write and hard to debug

We need parsers because we encode
programs into text!

Why text?

= Write programs that do one thing and do it well
= Write programs to work together

= Write programs to handle text streams, because that is a
universal interface

Why text?

= Write programs that do one thing and do it well
= Write programs to work together

= Write programs to handle text streams, because that is a
universal interface

A universal interface =/= THE universal interface |

9 I.

Text IS an Inconvenient universal
Interface

= Data has different types: String, Int, records, functions, ...
= Text is just one type: String
= Why should we encode all other types into strings?

10

Programming without syntax

(demo:

ool EditorForm

ext Help || ¥) Undo

public cla

public static void Main(string args)
inti=#9
string hella™
foreach s g arguemtn in args
if tri

driteline(i)

public

Press [DownArrow] to ct the first
to the nex

655 Program.

'S editor prototype)

See also:

 MPS (JetBrains)

* Intentional Software

« Software Factories (Microsoft)
« paredit-mode (Emacs)

http://blogs.msdn.com/b/kirillosenkov/archive/2009/09/08/first-videos-of-the-structured-editor-prototype.aspx

) I.

Potentials of Structural Editing

) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages
= Semantics-aware context help (limit number of choices)

) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages
= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

= Efficient transformations and refactorizations

) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

= Efficient transformations and refactorizations

= Pictures, math formulas together with programs

) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

= Efficient transformations and refactorizations

= Pictures, math formulas together with programs

= Incremental compilation at fine granularity

) I.

Potentials of Structural Editing

= Easily extensible to ALL programming languages

= Semantics-aware context help (limit number of choices)
= Unable to write ill-formed / ill-typed programs

= Efficient transformations and refactorizations

= Pictures, math formulas together with programs

= Incremental compilation at fine granularity

= Version control at fine granularity

New problems

New problems

= How do we display code in emails?
= Need to standardize a data format for parse trees

= Easy. We have been making standards all the time: ASCI]I,
Unicode, JPEG ...

New problems

= How do we display code in emails?
= Need to standardize a data format for parse trees

= Easy. We have been making standards all the time: ASCII,
Unicode, JPEG ...

= How do we do version control?
= NO more text means no more “lines”
= ... means most VC tools will stop working!

Outline

= Structural Editing (other people’s work)
= Structural Comparison (my work)
= Structural Version Control (vaporware)

ydiff: Structural Diff

= Language-aware

= Refactor-aware

= Format-insensitive

= Comprehensible output
= Open-source

http://github.com/yinwangO/ydiff

1
Demo

http://www.cs.indiana.edu/%7Eyw21/ydiff.html
http://github.com/yinwang0/ydiff

Ingredients

= Structural comparison
algorithms

= Generalized parse tree
format

= Home-made parser
combinator library

= Experimental parsers for

JavaScript, C++, Scheme, ...

) I.

Parsec.ss: Parser Combinator
Library in Scheme

= Modeled similar to Parsec.hs
= Macros make parsers look like BNF grammars (“DSL")
= Left-recursion detection (direct / indirect)

) I.

Parsec.ss: Parser Combinator
Library in Scheme

= Modeled similar to Parsec.hs
= Macros make parsers look like BNF grammars (“DSL")
= Left-recursion detection (direct / indirect)

[::= Efunction-definition 'function

(Bor (B... (@? Smodifiers) Stype
(@= "mame Sidentifier) S$formal-parameter-1list)
(@... (@= "mame Sidentifier) S£formal-parameter-1list))

(@7 £initializer)
Sfunction-body)

17

Left-recursion Detection

apply-check: left-recursion detected
parser: #<procedure:slefti>

[::= £leftl 'leftl start token: #(=truct:Token 0 2 ok)

(Bzeqg $1eft2 ($§ "ok"))) stack trace: #<procedure:...\ydiff\parsec.==:364:4>
#<procedure:$lefrls
(1:= §left2 'left2 #<procedure:...\ydiff\parsec.=3:364:4>
(Bor (@seq Sleftl (££ "ok")) #$<procedure:...\vdiff\parsec.=s3:399:4>
(£5 "ok"))) $<procedure:£lefcZ>

(%eval %leftl (=can "ok ok"))

zcheme

17

Left-recursion Detection

apply-check: |left-recursion detected
parser: #<procedure:slefti>
start token: #(=truct:Token 0 2 ok)

[1:= Eleftl 'leftl

(Bzeqg $1eft2 ($§ "ok"))) stack trace: #<procedure:...\ydiff\parsec.==:364:4>
#<procedure:$lefrls
(1:= §left2 'left2 #<procedure:...\ydiff\parsec.=3:364:4>
(Bor (@seq Sleftl (££ "ok")) #$<procedure:...\vdiff\parsec.=s3:399:4>
(£5 "ok"))) $<procedure:£lefcZ>

(%eval %leftl (=can "ok ok"))

zcheme

17

Left-recursion Detection

apply-check: |left-recursion detected
parser: #<procedure:slefti>
start token: #(=truct:Token 0 2 ok)

[1:= Eleftl 'leftl

(Bzeqg £left2 (55 "ok"))) stack trace: #<procedure:...‘ydiff\parsec.s=s:364:4>
$<procedure:$lefrls
{1:= $left2 'left2 ¥FLprocedure: ...wydilifwvparsec.ss:364:4>
(Bor (@seq Sleftl (££ "ok")) #$<procedure:...\vdiff\parsec.=s3:399:4>
($5 "ok"))) I#{PI‘DCEdU.I'E 1Elefrls

($eval %leftl (=can "ok ok"))

17

Left-recursion Detection

apply-check: |left-recursion detected
parser: #<procedure:slefti>
start token: #(=truct:Token 0 2 ok)

[1:= Eleftl 'leftl

(Bseq EEE?E%:‘$$ mokm))) stack trace: #<procedure:...‘ydiff\parsec.s=s:364:4>
$<procedure:$lefrls
{1:= $left2 'left2 ¥FLprocedure: ...wydilifwvparsec.ss:364:4>
(Bor (@seq|slefri| (g8 moxm)) #$<procedure:...\vdiff\parsec.=s3:399:4>
(88 "QE"TT F{prncedure:$left2}

($eval %leftl (=can "ok ok"))

17

| eft-recursion Detection problem

apply-check: |left-recursion detected
parser: #<procedure:sleftl>
start token: |#({=truct:Token 0 2 ck]]

1= Eleftl 'leftl

@zeq Eleftz | (88 "ok® stack trace: FLproccdUrc:...wydllilwparsec.ss:364:4>
f<procedurs:$leftl>
= £]1eft? 'left? = p:cceﬁ::e:...fyﬂ;rf}parsec.ss:SEQ:Q}
Bor (@seq|$lefti]| (88 mok” #<procedure:...\ydiff\parsec.ss:399:4>
gg moEm #<procedure:$left2>

fewval £leftl (scan "ok ok"
zcheme

17

| eft-recursion Detection problem

apply-check: |left-recursion detected
parser: #<procedure:sleftl>
start token: |#({=truct:Token 0 2 ck]]

1= Eleftl 'leftl

@zeq Eleftz | (88 "ok® stack trace: FLproccdUrc:...wydllilwparsec.ss:364:4>
f<procedurs:$leftl>
= £]1eft? 'left? = p:cceﬁ::e:...fyﬂ;rf}parsec.ss:SEQ:Q}
Bor (@seq|$lefti]| (88 mok” #<procedure:...\ydiff\parsec.ss:399:4>
gg moEm #<procedure:$left2>

fewval £leftl (scan fok |ok"

zcheme

Handle<5tring> 5hell: :EReadFile ({const char¥* name) {

int =size = 0;
char® chars = ReadChars (name, &=2ize);
if (chars = NULL) return Handle<String>():

Handle<S5tring> result = S5tring: :New(chars):

delete[] chars;
return result;

Handle<5tring> 5hell: :EReadFile ({const char¥* name) {
int =ize = 0;
char® chars = ReadChars (name, &=1ize);
if (chars = NULL) return Handle<S5tring>{():

(Expr 0 235|'function| (list
(Expr 0 14 |'type| (1list
|[Expr 0 & ridentifier (list (Expr 0 & 'id (li=st (Token 0 & "Handle")))))
} (Expr & 14 |'type-parameter
(list (Expr 7 13 |'type
(list (Expr 7 13|'identifier
(list (Expr 7 13 'id (list (Token 7 13 "String™))))))1)))))
(Expr 15 30 |"name
(list
(Expr 15 30|'identifier
(list

(Token 15 20 "Shell")
(Token 20 22 "::")
(Expr 22 30 'id (list (Token 22 30 "ReadFile™))}}))))

Parsers Built

Parsers Built

= C++ (596 lines, incomplete, most of C++)

Parsers Built

= C++ (596 lines, incomplete, most of C++)
= JavaScript (464 lines, complete, may still contain bugs)

Parsers Built

= C++ (596 lines, incomplete, most of C++)
= JavaScript (464 lines, complete, may still contain bugs)

[:: Sopen
: (SCheme l:lgnr (@~ (") (@~ "[™))))

(11 %2claose

(Bor (@~ ™)™} (@~ "1")))

(:: Snon-parens
(@and (@! ZSopen) (@! Sclaose)))

[::= Sparens 'sexp
(Bzeq Sopen (B* %£=zexp) %Sclose))

i1 Ssexp
{8+ (Bor Sparens Snon-parens)))

:: Eprogram S$sexp)

Key Algorithms

= Tree Editing Distance (TED)
= Move Detection

= Substructure Extraction

Tree Editing Distance * |

Node -> Node —> [Change]

§ »
é

Tree Editing Distance

Node -> Node —> [Change]

Tree Editing Distance

Node -> Node —> [Change]

1 1

2N
TN

2 3

Tree Editing Distance

Node -> Node —> [Change]

78 VAN
/ JAN

Tree Editing Distance

Node -> Node —> [Change]

Tree Editing Distance

e Node -> Node —> [Change]
~ cases are
equally oy @
possible nodify 4

delete “411?

Tree Editing Distance

Node -> Node —> [Change]

Tree Editing Distance

Node -> Node —> [Change]

Types of Changes

= Deletion

= |[nsertion

= Modification

= Move

= Reparent (aka “refactoring”)

Types of Changes

= Deletion €—
= |[nsertion €— /: -
= Modification

= Move
= Reparent (aka “refactoring”)

: I.

Types of Changes

= Deletion €—
P e/_
= Modification

= Move
= Reparent (aka “refactoring”)

Observation: allowing modification generates incomprehensible results

Tree Editing Distance with
Recursion

mutual recursion

diff-node | diff-list

Compare Compare

two nodes components of
the two nodes

diff-node :: Node -> Node —> [Change] : I.

diff-node :: Node -> Node —> [Change] :

{cond
[(hash—-get *diff-hash* nodel nodel)
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[(and (Char? nodel) (Char? nodel2))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
nodel nodel)]
[(and (5tr? nodel) (5tr? node2))
(diff-=string (Str-text nodel) (Str-text node?) nodel nodel)]
[(and (Comment? nodel) (Comment? nodez))
(diff-=string (Comment-text nodel) (Comment-text node?) nodel nodel))
[(and (Token? nodel) (Token? nodel))
(diff-string (Token-text nodel) (Token-text nodel) nodel nodez))
[(and (Expr? nodel) (Expr? node2)
(eqg? (get-type nodel) [(get-type nodel)))

(letwv ([(m c) (diff-list (Expr-elts nodel) (Expr-elts nodelZ) move?)])
[try—-extract m c))]

[(and (pair? nodel) (not (pair? node2)))

(diff-li=t nodel (list node?) move?)]

[(and (not (pair? nodel)) (pair? nodel))

(diff-1i=t (li=st nodel) nodeZ move?)]

[(and (pair? nodel) (pair? nodel))
(diff-1i=t nodel nodeZ move?)]
[el=e

(letw ([(m c) (total nodel node2)])

(try-extract m <))])))

diff-node ::

ode —> [Change] :

[thazsh—-get *diff-hash* nodel nodez)
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[(and (Char? nodel) (Char? nodel))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
nodel nodel)]
[{and (5tr? nodel) (Str? nodel))
(diff-=string (Str-text nodel) (Str-text node?) nodel nodel)]
[(and (Comment? nodel) (Comment? nodeZ))
(diff-=string (Comment-text nodel) (Comment-text node?) nodel nodel))
[land (Token? nodel) (Token? nodel))
(diff-string (Token-text nodel) (Token-text nodel) nodel nodez))
[land (Expr? nodel) (Expr? nodel)
(eqg? (get-type nodel) [(get-type nodel)))
(letwv ([(m c) (diff-list (Expr-elts nodel) (Expr-elts nodelZ) move?)])
[try—-extract m c))]

[fand (pair? nodel) (not (pair? node2)))
(diff-li=t nodel (list node?) move?)]
[(fand (not (pair? nodel)) (pair? nodel))
(diff-1i=t (li=st nodel) nodeZ move?)]
[fand (pair? nodel) (pair? nodel))

(diff-1i=t nodel nodeZ move?)]
[el=e

(letw ([(m c) (total nodel node2)])
[try-extract m <))])))

diff-node ::

Iﬂng‘Ea] 24

|[(hash-get *diff-hash* nodel node2) |
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[(and (Char? nodel) (Char? nodel))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
nodel nodel)]
[{and (5tr? nodel) (Str? nodel))
(diff-=string (Str-text nodel) (Str-text node?) nodel nodel)]
[(and (Comment? nodel) (Comment? nodeZ))
(diff-=string (Comment-text nodel) (Comment-text node?) nodel nodel))
[land (Token? nodel) (Token? nodel))
(diff-string (Token-text nodel) (Token-text nodel) nodel nodez))
[land (Expr? nodel) (Expr? nodel)
(eqg? (get-type nodel) [(get-type nodel)))
(letwv ([(m c) (diff-list (Expr-elts nodel) (Expr-elts nodelZ) move?)])
[try—-extract m c))]

[fand (pair? nodel) (not (pair? node2)))
(diff-li=t nodel (list node?) move?)]
[(fand (not (pair? nodel)) (pair? nodel))
(diff-1i=t (li=st nodel) nodeZ move?)]
[fand (pair? nodel) (pair? nodel))

(diff-1i=t nodel nodeZ move?)]
[el=e

(letw ([(m c) (total nodel node2)])
[try-extract m <))])))

diff-node ::

nge]” |

|[(hash-get *diff-hash* nodel node2) |
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[(and (Char? nodel) (Char? nodel))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
nodel nodel)]
[{and (5tr? nodel) (Str? nodel))
(diff-=string (Str-text nodel) (Str-text node?) nodel nodel)]
[(and (Comment? nodel) (Comment? nodeZ))
(diff-=string (Comment-text nodel) (Comment-text node?) nodel nodel))
[land (Token? nodel) (Token? nodel))
(diff-string (Token-text nodel) (Token-text nodel) nodel nodez))
[land (Expr? nodel) (Expr? nodel)
(eqg? (get-type nodel) [(get-type nodel)))
(letwv ([(m c) (diff-list (Expr-elts nodel) (Expr-elts nodelZ) move?)])
[try—-extract m c))]

[fand (pair? nodel) (not (pair? node2)))
(diff-li=t nodel (list node?) move?)]
[(fand (not (pair? nodel)) (pair? nodel))
(diff-1i=t (li=st nodel) nodeZ move?)]
[fand (pair? nodel) (pair? nodel))

(diff-1i=t nodel nodeZ move?)]
[el=e

(letw ([(m c) (total nodel node2)])
[try-extract m <))])))

diff-node ::

Iﬂlga‘Ee] 24

|[(hash-get *diff-hash* nodel node2) |
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[(and (Char? nodel) (Char? nodel))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
nodel nodel)]
[{and (5tr? nodel) (Str? nodel))
(diff-=string (Str-text nodel) (Str-text nodeZ) n
[(and (Comment? nodel) (Comment? nodeZ))
(diff-=string (Comment-text nodel) (Comment-text node
[land (Token? nodel) (Token? nodel))
(diff-=string (Token-text nodel) (Token-text node
[land (Expr? nodel) (Expr? nodel)
|leq? (get-type nodel) (get-type naodel))) |
(letwv ([(m c) (diff-list (Expr-elts nodel) (Expr-elts nodelZ) move?)])
[try—-extract m c))]

odel nodel)]

[fand (pair? nodel) (not (pair? node2)))
(diff-li=t nodel (list node?) move?)]
[(fand (not (pair? nodel)) (pair? nodel))

(diff-1i=t (li=st nodel) nodeZ move?)]
[fand (pair? nodel) (pair? nodel))
(diff-1i=t nodel nodeZ move?)]
[el=e
(letw ([(m c) (total nodel node2)])

(try-extract m <))])))

diff-node ::

Iﬂlga‘Ee] 24

|[(hash-get *diff-hash* nodel node2) |
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[(and (Char? nodel) (Char? nodel))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
nodel nodel)]
[{and (5tr? nodel) (Str? nodel))
(diff-=string (Str-text nodel) (Str-text nodeZ) n
[(and (Comment? nodel) (Comment? nodeZ))
(diff-=string (Comment-text nodel) (Comment-text node
[land (Token? nodel) (Token? nodel))
(diff-=string (Token-text nodel) (Token-text node
[land (Expr? nodel) (Expr? nodel)
|leq? (get-type nodel) (get-type naodel))) |
(letwv ([(m c) (diff-list (Expr-elts nodel) (Expr-elts nodelZ) move?)])
litry-extract m c)j]
[fand (pair? nodel) (not (pair? node2)))
(diff-li=t nodel (list node?) move?)]
[(fand (not (pair? nodel)) (pair? nodel))
(diff-1i=t (li=st nodel) nodeZ move?
[fand (pair? nodel) (pair? nodel))
(diff-1i=t nodel nodeZ move?)]
[el=e

odel nodel)]

(letv ([(m c) (total nod
|(try—extract mec

diff-node ::

Iﬂlga‘Ee] 24

|[(hash-get *diff-hash* nodel node2) |
=» (lambda (cached)
ivalues (car cached) (cdr cached)))]
[(and (Char? nodel) (Char? nodel))
(diff-=string (char->string (Char-text nodel))
([char-»=string (Char-text nodel))
nodel nodel)]
[{and (5tr? nodel) (Str? nodel))
(diff-=string (Str-text nodel) (Str-text nodeZ) n
[(and (Comment? nodel) (Comment? nodeZ))
(diff-=string (Comment-text nodel) (Comment-text node
[land (Token? nodel) (Token? nodel))
(diff-=string (Token-text nodel) (Token-text node
[land (Expr? nodel) (Expr? nodel)

(eqg? (get-type nodel) [(get-type nudeE]]]I
(letvy ([(m <) iff-list (Expr-elts nodel) (Expr-elts noded) move?])

|itry-extract m c)j |

odel nodel)]

[fand (pair? nodel) (not (pair? node2)))
(diff-li=t nodel (list node?) move?)]
[(fand (not (pair? nodel)) (pair? nodel))

(diff-1i=t (li=st nodel) nodeZ move?
[fand (pair? nodel) (pair? nodel))

(diff-1i=t nodel nodeZ move?)]
[el=e

(letv ([(m c) (total nod
|(try—extract mec

25

diff-list :: [Node] -> [Node] —> [Change]

(define guess
(lambda (1=1 1s2)
(letv ([(m0 c0) (diff-node (car 1=21) (car 1l=2) move?)]
[(ml 1) (diff-listl table (cdr 1sl) (cdr 1s2) move?)]
[costl (+ cO cl)])

{cond
[lor (same-def? (car 1l=sl) (car 1l=2))
([and (not (different-def? (car 1l=l1) (car 1=s2)))
(2imilar? (car 1l=21) (car 1l=2) cl)))
(memo (append md ml) costl)]
[el=ze

(letv ([(m2 c2) (diff-li=stl table (cdr 1lsl) 1ls2 move?)]
[(m3 c3) [(diff-li=stl table 121 (cdr l1ls2) move?)]
[cost2 (+ c2 [(node-size (car 1=1)))]
[costd (+ 3 (node-size (car 1=2)))])
[cond
[(<= cost2 cost3d)
(memo (append (del (car 1=s1)) m2) cost2))
[el=e
(memo (append (ins

(car 1=2)) m3) cost3)]))1))))

25

diff-list :: [NC le] -> [Node] —> [Change]

(define guess
(lambda (1=1 1s2)
(letv ([(mO cO) diff-node| (car 1=21) (car 1=2) move?)]
[(ml c1) diff-1i=stl table (cdr 1l=l) (cdr 1=2) move?)]
[costl (+ cO cl)])

{cond
[lor (same-def? (car 1l=sl) (car 1l=2))
([and (not (different-def? (car 1l=l1) (car 1=s2)))
(2imilar? (car 1l=21) (car 1l=2) cl)))
(memo (append md ml) costl)]
[el=ze

(letv ([(m2 c2) (diff-li=stl table (cdr 1lsl) 1ls2 move?)]
[(m3 c3) [(diff-li=stl table 121 (cdr l1ls2) move?)]
[cost2 (+ c2 [(node-size (car 1=1)))]
[costd (+ 3 (node-size (car 1=2)))])
[cond
[(<= cost2 cost3d)
(memo (append (del (car 1=s1)) m2) cost2))
[el=e
(memo (append (ins

(car 1=2)) m3) cost3)]))1))))

25

diff-list :: [NC le] -> [N

(define guess
(lambda (1=1 1s2)
(letv ([(mO cO) diff-node| (car 1=21) (ca
[(ml c1) diff-1i=stl table (cdr 1=
[costl (+ cO cl)])

] move?)]
(cdr 1s2) move?)]

{cond
[Jor (zame-def? (car 1l=sl) (car 1l=2))
([and (not (different-def? (car 1l=l1) (car 1=s2)))
(2imilar? (car 1l=21) (car 1l=2) cl)))
memo (append md ml) costl)]
[el=ze

(letv ([(m2 c2) (diff-li=stl table (cdr 1lsl) 1ls2 move?)]
[(m3 c3) [(diff-li=stl table 121 (cdr l1ls2) move?)]
[cost2 (+ c2 [(node-size (car 1=1)))]
[costd (+ 3 (node-size (car 1=2)))])
[cond
[(<= cost2 cost3d)
(memo (append (del (car 1=s1)) m2) cost2))
[el=e
(memo (append (ins

(car 1=2)) m3) cost3)]))1))))

25

compare head
nodes

shortcut: same

diff-list :: [NC le] -> [No SE™onetinge

unchanged
. N Otherwise, two
define guess .
lambda (1s1 132 choices:
letv ([(m0 cO diff-node| (car 1s1 car 2} move?)] delete headl
[(ml <1 diff-1i=tl table (cdr 1= cdr 1=2) move? or
e i en et insert head?
[Jor (same-def? (car 1l=1 car l=Z
and (not (different-def? (car 1=l car 1l=s2
2imilar? (car l1l=1 car 1=2) c0
memo (append md ml) costl
[el=e
letw D (mZ2 o2 diff-1i=tl table (cdr l=1l) 1l=Z2 move?

m3 c3 diff-li=stl table 131 (cdr l1ls2) move?
[cost? (+ c2 (node-size (car 1=l
costd (+ 3 (node-size (car ls2
cond
<= costd cost3
mems (append (del (car 1=s1 ms) costd
[el=e
memo (append (ins (car 1s2 m3) costd

25

compare head
nodes

shortcut: same

diff-list :: [NC le] -> [No SE™onetinge

unchanged
. N Otherwise, two
define guess .
lambda (131 1s2 choices:
letv ([(m0 cO diff-node| (car 1s1 car 2} move?)] delete headl
[(ml <1 diff-1i=tl table (cdr 1= cdr 1=2) move? or
[costl (+ 0 cl .
cond insert head?
[for (same-def? (car 1sl1 car 1lsZ
and (not (different-def? (car 1lsl car l1ls?
similar? (car 1lsl car l1ls2Z ci
. memo (append md ml) costl
pick the eTse

branch with letv ([[(m2 c2) (diff-listl table (cdr 1s1) 132 mave?
IOWGr COSt ! m3 53 dfff—listl_table 121 (cdr 1s2) move?
[cost? (+ c2 (node-size (car 1=l
costd (+ 3 (node-size (car ls2
cond
<= costd cost3
mems (append | (del (car 1=s1 ms) costd
[el=e
memo (append |(ins (car 1s2 m3) costd

Move Detection

= Some moved node can be detected by simple pairwise
comparison between and INSERTED change
sets.

ae -1,11 +1,11 @@
—defi rur

normal diff (Git

Move Detection

= Some moved node can be detected by simple pairwise
comparison between and INSERTED change
sets.

ae -1,11 +1,11 @@
—defi rur

normal diff (Git

26

Move Detection

= Some moved node can be detected by simple pairwise
comparison between and INSERTED change
sets.

@@ 1,11 +1,11 @@
~(define-syntax runs

" A o IR X) (jedr =x))))
}otrun #f iw) oz ...

((_ =) (edx =)))) ((=) g |...) (ran &£ (=) |g |--

Substructure

append was me d into appendill as an inner function

append (1s1,
if (1s1
return

return Cons (1sl.first|,

append (1s1.

rest,

27

Extraction

append was moved into appendill as an inner function

with some modificati appendAll is c«

be a wrapping function for append.

def appendall (*lists):

def append(1lsl,

if (1s1

return

return append (1sl.snd, Pair (lsl.fst/, 1s2})

return foldl (appendl, nil, slist(lists))

Substructure

append was me d into appendill as an inner function

append (1s1,
if (1s1
return

return Cons (1sl.first|,

append (1s1.

rest,

27

Extraction

append was moved into appendill as an inner function

with some modificati appendAll is c«

be a wrapping function for append.

def appendall (*lists):

def append(1lsl,

if (1s1

return

return append (1sl.snd, Pair (lsl.fst/, 1s2})

return foldl (appendl, nil, slist(lists))

Substructure

append was me d into appendill as an inner function

append (1s1,
if (1s1
return

return Cons (1sl.first|,

append (1s1.

rest,

27

Extraction

append was moved into appendill as an inner function

with some modificati appendall is c

be a wrapping function for append.

def appendall (*lists):

def append(lsl, 1s2):

if (1s1 nil) :

return
else:
Pair|(lsl.fst|, 1:

return append (1sl.snd,

return foldl (appendl, nil, slist(lists))

27

Substructure Extraction

append was moved into appendill as an inner function
with some modifications. appendill is cc
append was me d into appendill as an inner function # be a wrapping function for append.
def appendAll (*lists):
append (1s1,
if (1s1

return

return append (lsl.rest, Cons(lsl.first, 1s2))

return foldl (appendl, nil, slist(lists))

27

frame: keep as a

Substructure Extraction new change for

further extractions

append was m d into appendal En inner function
with some modifications. append
append was moved into appendall as an inner function # be a wrapping function for appen
with some modifications. def appendAll (*lists):
def append(1lsl, s2) :
if (1sl1 == nil):

return

return append (lsl.rest, Cons(lsl.first, 1s2))

return foldl (appendl, nil, slist(lists))

Outline

= Structural Editing (other people’s work)
= Structural Comparison (my work)
= Structural Version Control (vaporware)

Merging In text-based version control 29 I.

1 apples
2 bananas

3 cookies
4 rice

Merging In text-based version control 2 I.

1 apples

2 bananas
3 beer

4 cookies
5 rice

1 apples

2 bananas
3 cookies
4 rice

1 apples

2 bananas
3 cookies
4 pasta

5 rice

Merging In text-based version control 29 I.

4 cookies

5 rice

1 apples

2 bananas
3 cookies
4 rice

1 apples
2 bananas

3 cookies g
4 pasta ==
5 rice on line 4

Merging In text-based version control 29 I.

4 cookies

5 rice
2 bananas

1 apples 3 beer

2 bananas 4 cookies
3 cookies 5 pasta
4 rice

1 app|es O rice
2 bananas

3 cookies g
4 pasta Insert “pasta”
5 rice on line 4

Merging In text-based version control 29 I.

4 cookies

5 rice

1 apples
2 bananas
3 cookies

4 rice 1 apples

2 bananas
3 cookies

4 pasta
5 rice on line 4

Merging In text-based version control 29 I.

4 cookies

5 rice y
. anples - -

2 bananas
3 cookies
4 rice

. = Modifying a line of text
1 apples changes the line number of

2 bananas :
. consequent lines
3 cookies

4 pasta
5 rice

Merging In text-based version control 29 I.

4 cookies

5 rice y
L apples -~ -

2 bananas
3 cookies
4 rice

= Modifying a line of text

% gpples changes the line number of
ananas consequent lines

3 cookies | _

4 pasta = Patch that says “insert

5 rice pasta to line 4” must

relocate to line

Merging In text-based version control 29 I.

4 cookies

5rice y
1 apples -- -

2 bananas
3 cookies
4 rice

= Modifying a line of text

% gpples changes the line number of
ananas consequent lines

3 cookies | _

4 pasta - = Patch that says “insert

5 rice pasta to line 4” must

relocate to line
= =» Patch Theory (Darcs)

: I.

. merging will no longer be
a problem in Structural Version Control

Modifying Different Nodes " |

Modifying Different Nodes 31 |.

Modifying Different Nodes 31 |.

Each node has a
GUID

Modifying Different Nodes

__ #3224
Each node has a °

Modifying Different Nodes 31 |.

- HE Insert node
Each node has a ° e
GUID | #323F containing

“5” in node #2EA4

Insert node #3248
containing “6” in
node #5B40

Insert node
#323F containing
“5” In node #2EA4

Each node has a
GUID

Insert node #323F
containing “5” in node
#2EA4
Insert node #3248
containing “6” in node
#5B40

Insert node #3248
containing “6” in
node #5B40

Modifying The Same Node ~ ||}

Modifying The Same Node ~ ||}

A

Modifying The Same Node ~ ||}

e

Modifying The Same Node ~ ||}

A

Modifying The Same Node ~ ||}

A

Insert node #2048
containing “6” in
node #5B40, =

position 0.5

Modifying The Same Node ~ ||}

ey

B / N\
‘gt - i L - -
S ‘ S - - -’

Insert node #2048
containing “6” in
node #5B40, =

position 0.5

Modifying The Same Node ~ ||}

§n €2

Insert node #2048
containing “6” in
node #5B40, =

position 0.5

__—

Modifying The Same Node

[\. AN
IAN

L - s o ez
\ \

Insert node #2048 Insert node #2056
containing “6” in containing “7” in

node #5B40, a1 node #5B40, at
position 0.5 position 0.1

Modifying The Same Node ~ ||}

VANIVAN
4 é\g _{ 4:}-_ { *}*

\

\ Insert node #2048 containing “6”
Insert node #2048 Insert node #2056 in node #5B40, at position 0.5

containing “6” in containing “7” in
node #5B40, node #5B40,

g

Insert node #2056 containing “7”
in node #5B40, at position 0.1

Modifying The Same Node

Because the real line can be infinitely divided, we
can always sort the numbers into relative positions!

2
/\\

P @ s
02 o5 08

\

Insert node #2048 containing “6”

Insert node #2048 Insert node #2056 in node #5B40, at position 0.5
Containing "6 Contammg rrin Insert node #2056 containing “7”
node #5B40, node #5B40,

in node #5B40, at position 0.1

4,
Modifying The Same Nod¢ a

100% \
Because the real line can be infinitely divided, we conilict-free
can always sort the numbers into relative positions! merging!! .
1 1
2 3 2 3

/on 4D

\ N .

Insert node #2048 containing “6”

Insert node #2048 Insert node #2056 in node #5B40, at position 0.5
Containing 6" in COI’(\;&I;?BQL;ZH n Insert node #2056 containing “7”
node #5B40, node ,

in node #5B40, at position 0.1

. \ 4
Modifying The Same Nod¢ a

100% \
Because the real line can be infinitely divided, we conilict-free
can always sort the numbers into relative positions! merging!! \
¢ 3
__ 4 | 5
] | \
e #2048 containing “6”
Insert node #20 A 5B40, at position 0.5
Contalnmg 6% In COI’(\;&I;?BQLLO? n Insert node #2056 containing “7”
node #5B40, node]

in node #5B40, at position 0.1

What's wrong?

0.8 printy

What's wrong?

0.2x=1

05y=2

0.8 printy

0.8 printy

What's wrong?

0.2x=1

05y=2

0.8 printy

0.8 printy

What's wrong? " |

0.2x=1

05y=2

0.8 printy

0.8 printy

Merge succeed,
but bugs introduced!

What S WrOng’? All line-based VC I.

tools have this
behavior. Try it!

0.2x=1

05y=2

N\

0.8 printy

0.8 printy

Merge succeed,
but bugs introduced!

Modifying The Same Node
(a more sensible way) |.

Modifying The Same Node
(a more sensible way) |.

{}\ ‘ h

Modifying The Same Node
(a more sensible way) |.

{4}.\ ‘ h

Modifying The Same Node
(a more sensible way)

‘gt - i L - -
g ‘ N g " —

__—

Modifying The Same Node
(a more sensible way)

-
£ »
¢ A{\..,

Insert node #2048
containing “6” in
node #5B40,
between #31FE and
#3208

__—

£ »
$bo

Modifying The Same Node
(a more sensible way) |.

N
A\g ./4

\
Insert node #2048 Insert node #2056
containing “6” in

containing “7” in
node #5B40, node #5B40, hefore
between #31FE and £431FE
#3208

Modifying The Same Node
(a more sensible way) |.

VANPAN

£ »
4\ ./.L\. PAANN

‘\
Insert node #2048 Insert node #2056
containing “6” in

containing “7” in
node #5B40, node #5B40, hefore
between #31FE and £431FE

#3208

Modifying The Same Node
(a more sensible way) |.

,/ N ,/ N\
Ax /A /A\

| ert node #2048 contai g6

g

node #5B40,
\ \
Insert node #20_48 Insert node #2056 S
contalnlng “6” in o oy - Insert node #2056 containing “7
containing “7” In in node #5B40,

node #5B40

I ' I node #5B40, - I

Modifying The Same Node (again) |.

Modifying The Same Node (again) |.

‘N A

Modifying The Same Node (again) |.

O A

Modifying The Same Node (again) -

Modifying The Same Node (again) |.

En € »

4)(\ (&%

Insert node #2048

containing “6” in
node #5B40,
between #31FE and
#3208

Modifying The Same Node (again) * |l

e e
o

e

T— L o 2\
- ‘ - —-— ‘ S

Insert node #2048 Insert node #2056
containing “6” in containing “7” in
node #5B40, node #5B40,
between #31FE and between #31FE and

#3208 #3208

Modifying The Same Node (again) * |l

AN
AN

Insert node #2048 Insert node #2056
containing “6” in containing “7” in

node #5B40, node #5B40,
between #31FE and between #31FE and
#3208 #3208

Modifying The Same Node (again) * |l

N z\ Z\
A\ PAAIFIINS

Insert node #2048 containing 6\
in node #5B40, oo

Insert node #2048 \ Insert node #2056 and #3208

containing “6” in containing “7” in Insert node #2056 containing “7"
node #5B40 node #5B40 in node #5B40, between #31FE
) 17 d
between #31FE and between #31FE and and #3208

#3208 #3208

Modifying The Same Node (again) * |l

4 ?
Z\.. Z\.
zgx 4; 4\\

Insert node #2048 containing * 6
in node #5B40,

Insert node #2048 \ Insert node #2056

containing “6” in containing “7” in Insert node #2056 containing *7”
node #5B40, node #5B40, in node #5B40,

PAAIIPIANS

Insert node #2048 containing 6‘\

\ in node #5B40, oo o

Insert node #2048 Insert node #2056 and #3208
containing “6” in containing “7” in
node #5B40, node #5B40,
between #31FE and between #31FE and

#3208 #3208

Insert node #2056 containing “7”
in node #5B40, between #21HE
and #3208

: I.

Some observations into text-base
VC tools

: I.

Some observations into text-base
VC tools

= Grounds are where programs sit on.

: I.

Some observations into text-base
VC tools

= Grounds are where programs sit on.

= Merging is hard because simultaneous edits change the
grounds in different ways, but text-based VC tools don’t have
a handle on them.

: I.

Some observations into text-base
VC tools

= Grounds are where programs sit on.

= Merging is hard because simultaneous edits change the
grounds in different ways, but text-based VC tools don’t have
a handle on them.

= This is why Darcs uses Patch Theory, which gives us limited
power for reasoning about the grounds.

: I.

Some observations into text-base
VC tools

= Grounds are where programs sit on.

= Merging is hard because simultaneous edits change the
grounds in different ways, but text-based VC tools don’t have a
handle on them.

= This is why Darcs uses Patch Theory, which gives us limited
power for reasoning about the grounds.

= Git uses hash values to locate the grounds, but has larger
granularity. Also, hash values have dependency on the contents.

: I.

Some observations into text-base
VC tools

= Grounds are where programs sit on.

= Merging is hard because simultaneous edits change the
grounds in different ways, but text-based VC tools don’t have a
handle on them.

= This is why Darcs uses Patch Theory, which gives us limited
power for reasoning about the grounds.

= Git uses hash values to locate the grounds, but has larger
granularity. Also, hash values have dependency on the contents.

= Once we have true handles on the grounds, the problem
disappears.

What's next?

What's next?

= Other scenarios

What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

= A descriptive language for patches, and a constraint solver
for merging them?

. I.

What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

= A descriptive language for patches, and a constraint solver
for merging them?

= A database-like transaction system for parse tree structures?

. I.

What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

= A descriptive language for patches, and a constraint solver
for merging them?

= A database-like transaction system for parse tree structures?
= Let the structural editor construct the change sets?

37

What's next?

= Other scenarios
= HOW MUCH and WHAT context to include in the patches?

= A descriptive language for patches, and a constraint solver
for merging them?

= A database-like transaction system for parse tree structures?
= Let the structural editor construct the change sets?
= Generalize structural programming to natural languages?

DiIScussIons

	 Structural Version Control
	 Structural Version Control
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Introducing “Structural Programming”
	Introducing “Structural Programming”
	Introducing “Structural Programming”
	Introducing “Structural Programming”
	Introducing “Structural Programming”
	Outline
	Programs are data structures
	Data structures are usually encoded as text
	Data structures are usually encoded as text
	Data structures are usually encoded as text
	Parsers
	Parsers
	Why text?
	Why text?
	Text is an inconvenient universal interface
	Programming without syntax (demo: Kirill Osenkov’s editor prototype)
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	Potentials of Structural Editing
	New problems
	New problems
	New problems
	Outline
	ydiff: Structural Diff
	Ingredients
	Parsec.ss: Parser Combinator Library in Scheme
	Parsec.ss: Parser Combinator Library in Scheme
	Left-recursion Detection
	Left-recursion Detection
	Left-recursion Detection
	Left-recursion Detection
	Left-recursion Detection
	Left-recursion Detection
	Generalized Parse Tree Format
	Generalized Parse Tree Format
	Parsers Built
	Parsers Built
	Parsers Built
	Parsers Built
	Key Algorithms
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Tree Editing Distance
	Types of Changes
	Types of Changes
	Types of Changes
	Tree Editing Distance with Recursion
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-node :: Node -> Node –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	diff-list :: [Node] -> [Node] –> [Change]
	Move Detection
	Move Detection
	Move Detection
	Substructure Extraction
	Substructure Extraction
	Substructure Extraction
	Substructure Extraction
	Substructure Extraction
	Outline
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Merging in text-based version control
	Prediction 1: merging will no longer be a problem in Structural Version Control
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying Different Nodes
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	Modifying The Same Node
	What’s wrong?
	What’s wrong?
	What’s wrong?
	What’s wrong?
	What’s wrong?
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node�(a more sensible way)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Modifying The Same Node (again)
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	Some observations into text-base VC tools
	What’s next?
	What’s next?
	What’s next?
	What’s next?
	What’s next?
	What’s next?
	What’s next?
	Discussions

