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You know, it’s always safe to put “Towards” in the title 
when you haven’t done much ;-)
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Q: What’s the best way to solve HARD problems?
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Q: What’s the best way to solve HARD problems?

A: Don’t solve them. Make them DISAPPEAR.

This often just requires a slight change of DESIGN.
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Introducing “Structural Programming”

3

Disambiguate:
Structural Programming 
not Structured Programming

The idea has been decades old

Lambda calculus is even older

“What goes around comes around”



Outline
Structural Editing (other people’s work)
Structural Comparison (my work)
Structural Version Control (vaporware)
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Programs are data structures
 Usually called “parse tree” or “AST” (abstract syntax tree)
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Data structures are usually 
encoded as text
function factorial(n) {

if (n == 0) {
return 1;

}
return n * factorial(n - 1);

}
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}

The encoding scheme is called syntax
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keywords, 
delimeters



Parsers
 A parser is a decoder from text to data structures
 Parsers are tricky to write and hard to debug
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Parsers
 A parser is a decoder from text to data structures
 Parsers are tricky to write and hard to debug

We need parsers because we encode
programs into text!
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Why text?
Write programs that do one thing and do it well
Write programs to work together
Write programs to handle text streams, because that is a

universal interface
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Why text?
Write programs that do one thing and do it well
Write programs to work together
Write programs to handle text streams, because that is a

universal interface

A universal interface  =/= THE universal interface
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Text is an inconvenient universal 
interface
 Data has different types: String, Int, records, functions, …
 Text is just one type: String
Why should we encode all other types into strings?
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Programming without syntax 
(demo: Kirill Osenkov’s editor prototype)
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See also: 
• MPS (JetBrains)
• Intentional Software
• Software Factories (Microsoft)
• paredit-mode (Emacs)

http://blogs.msdn.com/b/kirillosenkov/archive/2009/09/08/first-videos-of-the-structured-editor-prototype.aspx


Potentials of Structural Editing
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Potentials of Structural Editing
 Easily extensible to ALL programming languages
 Semantics-aware context help (limit number of choices)
 Unable to write ill-formed / ill-typed programs
 Efficient transformations and refactorizations
 Pictures, math formulas together with programs
 Incremental compilation at fine granularity
 Version control at fine granularity
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New problems
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New problems
 How do we display code in emails?
 Need to standardize a data format for parse trees
 Easy. We have been making standards all the time: ASCII, 

Unicode, JPEG …
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New problems
 How do we display code in emails?
 Need to standardize a data format for parse trees
 Easy. We have been making standards all the time: ASCII, 

Unicode, JPEG …
 How do we do version control?
 No more text means no more “lines”
 … means most VC tools will stop working!
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Outline
Structural Editing (other people’s work)
Structural Comparison (my work)
Structural Version Control (vaporware)
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ydiff: Structural Diff
 Language-aware
 Refactor-aware
 Format-insensitive
 Comprehensible output
 Open-source

Demo
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http://github.com/yinwang0/ydiff

http://www.cs.indiana.edu/%7Eyw21/ydiff.html
http://github.com/yinwang0/ydiff


Ingredients
 Structural comparison 

algorithms
 Generalized parse tree 

format
 Home-made parser 

combinator library
 Experimental parsers for 

JavaScript, C++, Scheme, …
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Parsec.ss: Parser Combinator 
Library in Scheme
 Modeled similar to Parsec.hs
 Macros make parsers look like BNF grammars (“DSL”)
 Left-recursion detection (direct / indirect)
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Left-recursion Detection
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Generalized Parse Tree Format18
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Parsers Built
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Parsers Built
 C++ (596 lines, incomplete, most of C++)
 JavaScript (464 lines, complete, may still contain bugs)
 (Scheme                                                )
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Key Algorithms
 Tree Editing Distance (TED)
 Move Detection
 Substructure Extraction
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Tree Editing Distance

1

2 3

4

Node -> Node –> [Change]
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45

delete “4”? insert “5”?
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Minimize the 
number of 

changes that 
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trees equal

All three 
cases are 

equally 
possible

Node -> Node –> [Change]

21

cost = 3

cost = 2

cost = 1



Types of Changes
 Deletion
 Insertion
 Modification
 Move
 Reparent (aka “refactoring”)
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Types of Changes
 Deletion
 Insertion
 Modification
 Move
 Reparent (aka “refactoring”)

TED can handle

Observation: allowing modification generates incomprehensible results
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Tree Editing Distance with 
Recursion

diff-node diff-list
mutual recursion

Compare 
two nodes

Compare 
components of 
the two nodes
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diff-node :: Node -> Node –> [Change]
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diff-node :: Node -> Node –> [Change]

substructure 
extraction from the 

changes

base 
cases

dispatch on 
node types

memoization

only compare nodes 
of the same type

compare 
subnodes
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diff-list :: [Node] -> [Node] –> [Change]
Otherwise, two 

choices:
delete head1

or
insert head2

compare head 
nodes

shortcut: same 
definition or 
unchanged
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diff-list :: [Node] -> [Node] –> [Change]
Otherwise, two 

choices:
delete head1

or
insert head2

compare head 
nodes

shortcut: same 
definition or 
unchanged

pick the 
branch with 
lower cost
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Move Detection
 Some moved node can be detected by simple pairwise 

comparison between DELETED and INSERTED change 
sets.

normal diff (Git)
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Move Detection
 Some moved node can be detected by simple pairwise 

comparison between DELETED and INSERTED change 
sets.

normal diff (Git) ydiff
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Substructure Extraction

27



Substructure Extraction

27



Substructure Extraction

27



Substructure Extraction
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Substructure Extraction
frame: keep as a 
new change for 

further extractions
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Outline
Structural Editing (other people’s work)
Structural Comparison (my work)
Structural Version Control (vaporware)
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Merging in text-based version control 29

1 apples
2 bananas
3 cookies
4 rice

1 apples
2 bananas
3 beer
4 cookies
5 rice

1 apples
2 bananas
3 cookies
4 pasta
5 rice

Insert “pasta” 
on line 4

Insert “beer” 
on line 3

1 apples
2 bananas
3 beer
4 cookies
5 pasta
6 rice

Insert “pasta” 
on line 5

Insert “beer” 
on line 3

 Modifying a line of text 
changes the line number of 
consequent lines
 Patch that says “insert 

pasta to line 4” must 
relocate to line 5
  Patch Theory (Darcs)



Prediction 1: merging will no longer be 
a problem in Structural Version Control
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Each node has a 
GUID
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What’s wrong? 33

0.2 x = 1

0.8 print y

0.2 x = 1

0.5 y = 2

0.8 print y

0.2 x = 1

0.5 blah

0.65 y = 3

0.8 print y

0.2 x = 1

0.5 y = 2

0.65 y = 3

0.8 print y

All line-based VC 
tools have this 
behavior. Try it!

Merge succeed,
but bugs introduced!
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grounds in different ways, but text-based VC tools don’t have a 
handle on them.
 This is why Darcs uses Patch Theory, which gives us limited 

power for reasoning about the grounds.
 Git uses hash values to locate the grounds, but has larger 

granularity. Also, hash values have dependency on the contents.
 Once we have true handles on the grounds, the problem 

disappears.
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 Let the structural editor construct the change sets?
 Generalize structural programming to natural languages?
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